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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-
ing from software design and computer graphics to Internet computing and security, from scientific applica-

tions and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Real-Time Systems 
Implications in the 
Blockchain-Based Vertical 
Integration of Industry 4.0

The Industrial Internet of Things 
(IIoT) is expected to attract signif-
icant investments for industry. In 
this new environment, blockchain 
presents immediate potential in 
applications of the IIoT, offering 
several benefits to industrial cyber-
physical systems. Read more in this 
article from the September 2020 
issue of Computer.

Data Cyberinfrastructure for 
End-to-End Science

Large-scale scientific facilities 
provide a broad community of 
researchers and educators with 
open access to instrumentation 
and data products generated 
from geographically distributed 
instruments and sensors. This 
article from the September/Octo-
ber 2020 issue of Computing in 
Science & Engineering discusses 
key architectural design, deploy-
ment, and operational aspects of 

a production cyberinfrastructure 
for the acquisition, processing, 
and delivery of data from large 
scientific facilities—using expe-
riences from the National Sci-
ence Foundation’s Ocean Obser-
vatories Initiative. This paper 
also outlines new models for data 
delivery and opportunities for 
insights in a wide range of scien-
tific and engineering domains as 
the volumes and variety of data 
from facilities grow.

IBM’s World Citizens: 
Valentim Bouças and the 
Politics of IT Expansion in 
Authoritarian Brazil

This article from the July–Septem-
ber 2020 issue of IEEE Annals of 
the History of Computing analyzes 
the politics of IBM’s expansion in 
interwar Brazil. It does so by focus-
ing on Valentim Bouças, IBM’s first 
representative in Brazil and an 
outstanding figure in IBM trade 
press materials for the rapid pace 
at which he grew IBM’s Brazilian 
operations. Grounded in the ear-
liest recorded moment in which 
IBM was first threatened with 
expulsion from Brazilian markets, 

this article analyzes how IBM, led 
by Bouças, regained Brazilian mar-
kets and expanded its operations 
in the country through the polit-
ical negotiations it entered into. 
This article analyzes how IBM, as 
a US-based multinational IT firm, 
first installed itself in Brazil’s inter-
war authoritarian regime, helping 
restructure Brazilian administra-
tive and financial apparatuses to 
its advantage.

Spatialized Audio in a Custom-
Built OpenGL-Based Ear 
Training Virtual Environment

Interval recognition is an impor-
tant part of ear training—the key 
aspect of music education. Once 
trained, the musician can iden-
tify pitches, melodies, chords, 
and rhythms by listening to music 
segments. In a conventional set-
ting, the tutor would teach a 
trainee the intervals using a musi-
cal instrument, typically a piano. 
However, with the emergence 
of new technologies such as vir-
tual reality (VR) and areas such 
as edutainment, this and similar 
trainings can be transformed into 
more engaging, more accessible, 
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customizable (virtual) environ-
ments, with the addition of new 
cues and bespoke progression 
settings. In this article from the 
September/October 2020 issue 
of IEEE Computer Graphics and 
Applications, the authors describe 
a VR ear training system for inter-
val recognition. 

Proxy Experience Replay: 
Federated Distillation  
for Distributed  
Reinforcement Learning

Traditional distributed deep rein-
forcement learning (RL) com-
monly relies on exchanging the 
experience replay memory (RM) 
of each agent. Since the RM con-
tains all state observations and 
action policy history, it may incur 
huge communication overhead 
while violating the privacy of each 
agent. This article from the July/
August 2020 issue of IEEE Intelli-
gent Systems presents a commu-
nication-efficient and privacy-pre-
serving distributed RL framework, 
coined federated reinforcement 
distillation (FRD). In FRD, each 
agent exchanges its proxy expe-
rience RM (ProxRM), in which pol-
icies are locally averaged with 
respect to proxy states cluster-
ing actual states. To provide FRD 
design insights, the authors pres-
ent ablation studies on the impact 

of ProxRM structures, neural net-
work architectures, and communi-
cation intervals.

Fog Computing as  
Privacy Enabler

Despite broad discussions on pri-
vacy challenges arising from fog 
computing, the authors of this 
article from the July/August 2020 
issue of IEEE Internet Comput-
ing argue that privacy and secu-
rity requirements might actually 
drive the adoption of fog comput-
ing. They present four patterns of 
fog computing fostering data pri-
vacy and the security of business 
secrets, complementing existing 
cryptographic approaches. Their 
practical application is illuminated 
on the basis of three case studies.

PurpleDrop: A Digital 
Microfluidics-Based Platform 
for Hybrid Molecular-
Electronics Applications

Molecular manipulation and analy-
sis are the cornerstone of life sci-
ences. With the recent advances in 
molecular data storage and com-
puting, it has become an increas-
ingly exciting and viable alterna-
tive for the post-CMOS scaling 
era. Widespread use of molecular 

manipulation/analysis and data 
storage/computing requires a 
scalable and low-cost platform for 
hybrid molecular-electronics sys-
tems. This enables us to build on 
the best of what molecular and 
electronics systems can offer. In 
this article from the September/
October 2020 issue of IEEE Micro, 
the authors present PurpleDrop, a 
full-stack digital microfluidic plat-
form for hybrid molecular-elec-
tronic systems in multiple domains, 
and focus on DNA data storage as 
a use case. 

Wall Screen: An Ultra-High 
Definition Video-Card for the 
Internet of Things

Eight-k ultra-high definition (UHD) 
is paving the way for the next-gen-
eration video systems. In the audio-
visual industry, besides delivering 
a more immersive experience, it 
is a means to smooth spatial arti-
facts during video sampling. In the 
medical industry, it may provide 
surgeons with increased reality in 
surgeries. Nevertheless, research-
ers are struggling to meet the high 
throughput required by this res-
olution, and hardware solutions 
miss the flexibility required for on-
demand updates. In this context, 
the authors of this article from the 
July–September 2020 issue of IEEE 
MultiMedia propose an 8-k video 
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card based on a hybrid platform 
endowed with “soft” programmable 
logic and “hard” processors. 

Leveraging IoTs and Machine 
Learning for Patient 
Diagnosis and Ventilation 
Management in the Intensive 
Care Unit

Future healthcare systems will 
rely heavily on clinical deci-
sion support systems (CDSS) to 
improve the decision-making pro-
cesses of clinicians. To explore 
the design of future CDSS, the 
authors of this article from the 
July–September 2020 issue of IEEE 
Pervasive Computing developed 
a research-focused CDSS for the 
management of patients in the 
intensive care unit that leverages 
Internet of Things devices capa-
ble of collecting streaming phys-
iologic data from ventilators and 
other medical devices. They then 
created machine-learning models 
that could analyze the collected 
physiologic data to determine 
if the ventilator was delivering 
potentially harmful therapy and 
if a deadly respiratory condition, 
acute respiratory distress syn-
drome (ARDS), was present. 

Plundervolt: How a Little Bit 
of Undervolting Can Create a 
Lot of Trouble

Historically, fault injection was 
the realm of adversaries with 

physical access. This changed 
when research revealed that 
remote attackers could use soft-
ware to inject faults. Plundervolt 
is a new software-based attack on 
Intel’s trusted execution technol-
ogy (SGX). Plundervolt can break 
cryptography and inject mem-
ory-safety bugs into secure code. 
Read more in this article from the 
September/October 2020 issue of 
IEEE Security & Privacy.

Neural Distributed Ledger

The neural distributed ledger solu-
tion presented in this article from 
the September/October 2020 
issue of IEEE Software adopts a 
ledger-of-ledgers approach to per-
form the interconnection of mul-
tiple ledgers. Beyond inter-led-
ger operability, it also enables the 
development of custom block-
chain-based solutions, providing 
controlled costs and scalability 
while retaining decentralization 
and security.

Predictive Maintenance  
for Infrastructure  
Asset Management

Optimal maintenance is one of the 
key concerns for asset-intensive 
industries in terms of reducing 
downtime and occurring costs. 
The advancement of data-driven 
technologies, affordable comput-
ing powers, and growing amounts 
of data introduced a paradigm 

called predictive maintenance 
(PdM). PdM seeks to find out an 
optimal moment for the mainte-
nance of an asset, where no early 
intervention leads to undue extra 
cost, and no late maintenance 
activity poses a safety risk. With 
the instrumentation of the cyber-
physical system on assets, PdM 
transforms a typical structure 
into a smart structure that can 
send warnings in cases of near 
failure states. However, several 
practical challenges hamper the 
adoption of PdM solutions within 
industries. This article from the 
September/October 2020 issue of 
IT Professional outlines a typical 
PdM modeling framework and its 
key components. 

Join the IEEE 
Computer 
Society
computer.org/join
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Editor’s Note

What’s Next for 
Embedded Systems?

Embedded systems are 

becoming pervasive—with 

applications in consumer elec-

tronics, autonomous vehicles, 

and the Internet of Things (IoT)—

but they still have a long way to go 

to reach peak efficiency, depend-

ability, and interoperability. In 

this ComputingEdge issue, two 

articles from Computer exam-

ine the past, present, and future 

of embedded systems, includ-

ing research opportunities and 

challenges.

In “Embedded Artificial Intel-

ligence: The ARTEMIS Vision,” the 

authors describe the current state 

of the art in embedded and cyber-

physical systems and contem-

plate the improvements needed 

to achieve embedded intelligence. 

In “Developing IoT Systems: It’s All 

About the Software,” the authors 

focus on embedded systems in 

the IoT, arguing that developing 

software for these systems should 

be simpler and more collaborative. 

Embedded systems are com-

mon in mobile devices, which have 

become essential tools for com-

munication, business, and daily 

life. IEEE Internet Computing’s “6G 

Vision: An AI-Driven Decentral-

ized Network and Service Archi-

tecture” discusses the future of 

mobile computing beyond 5G 

networks. IEEE Computer Graph-

ics and Applications’ “Turning a 

Smartphone Selfie Into a Studio 

Portrait” presents an algorithm for 

automatically removing lighting 

artifacts from flash photos taken 

on mobile devices.

Image editing is just one of 

many previously manual tasks 

that can now be automated. IEEE 

Intelligent Systems’ “Intent Clas-

sification for Dialogue Utter-

ances” looks at automated cus-

tomer service systems that use 

intent classification to determine 

the reason the customer is con-

tacting the organization. IT Pro-

fessional ’s “White Learning: A 

White-Box Data Fusion Machine 

Learning Framework for Extreme 

and Fast Automated Cancer 

Diagnosis” proposes a framework 

for automated breast cancer 

detection. 

This ComputingEdge issue con-

cludes with two articles about eth-

ics in computing and technology. 

The author of IEEE Software’s “Is 

Your Software Valueless?” argues 

that software design should con-

sider values such as compassion, 

social responsibility, and justice—

not just business needs like cost 

and performance. In IEEE Multi-

Media’s “Shaping Our Common 

Digital Future,” the author urges 

multimedia researchers and prac-

titioners to approach their work 

with social good in mind. 
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EDITOR: Dimitrios Serpanos, ISI/ATHENA and University of Patras, serpanos@computer.org

COLUMN: CYBER-PHYSICAL SYSTEMS

Embedded Artificial Intelligence: 
The ARTEMIS Vision
Dimitrios Serpanos, ISI/ATHENA and University of Patras

Gianluigi Ferrari, University of Parma

George Nikolakopoulos, Lulea University of Technology

Jon Perez, Ikerlan

Markus Tauber, University of Applied Sciences Burgenland

Stefan Van Baelen, IMEC

Advances in embedded and cyberphysical systems have disrupted numerous application 
domains. We examine the requirements and challenges of these technologies, 
which present significant opportunities for interdisciplinary research.

Embedded computing has brought significant 
advances in application domains ranging 
from home appliances and health systems to 

environmental monitoring and from smart factories 
to autonomous transportation (cars, trains, ships, and 
airplanes) and smart cities. Embedded computing sys-
tems constitute the cyber part of cyberphysical sys-
tems (CPSs). Autonomous CPSs are commonly used in 
processes of increasing complexity that are designed 
and implemented with single-processor systems (for 
example, a patient’s insulin pump) or distributed, inter-
connected processing nodes (for example, autono-
mous vehicles). Autonomous CPSs have also become 
increasingly connected to the Internet of Things (IoT), 
which includes specialized networks, such as the 
Industrial IoT, Internet of Vehicles, and others.

Clearly, a hierarchy of CPSs is emerging, where 
simple autonomous systems are interconnected 
to create higher-level autonomous systems that, 
in turn, are interconnected to provide even more 
complex systems and applications. For example, a 
CPS for an autonomous car’s cruise control is part 

of an autonomous car—a more complex distributed 
CPS—that may be a node of a network of autonomous 
vehicles (a fleet) managed through a cloud application.

The pervasiveness of embedded systems and the 
increasing deployment of CPSs lead to an emerging 
infrastructure that spans globally and enables the 
development of new applications and services that 
were infeasible or inconceivable in the recent past. 
The immediate availability of operational data as well 
as computational power in conjunction with artifi-
cial intelligence (AI) techniques provides significant 
opportunities for systems and services worldwide. To 
achieve this vision, CPSs need to be efficient, scalable, 
and extensible in terms of both hardware and software.

The adoption of CPSs in various application 
domains leads to strong constraints on their design 
and implementation. More precisely, CPS technolo-
gies are quite demanding for the purpose of satisfy-
ing strong application and operational environment 
requirements, including real-time constraints, safety 
and security, continuous operation, scalability, exten-
sibility, autonomy, power consumption, and internet-
working. Although CPSs typically abide by several 
of these requirements, the application domains, 
ranging from manufacturing to transport and from 
health to power, impose different constraints on each 

This article originally  
appeared in 

 

vol. 53, no. 11, 2020
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specification. For example, industrial production 
systems have stricter requirements for real-time con-
straints and continuous operation than home auto-
mation systems, while they have more relaxed stipula-
tions for power consumption relative to autonomous, 
mobile health-monitoring systems.

EMBEDDED INTELLIGENCE
The significant recent technological advances, 
including the revolution in AI, lead to the increased 
“intelligence” of computational systems and, espe-
cially, of CPSs. This happens during both the design 
phase and operation in the field. Autonomous and 
semiautonomous systems have 
been a reality for a long time in 
controlled environments, for 
example, robots in manufacturing 
lines, but recent developments 
enable the creation of autono-
mous systems that are self-aware 
and adaptive to dynamic environ-
ments, such as efficient and safe 
self-driving vehicles.

Embedded intelligence requires 
the development of efficient and 
effective technologies for embed-
ded systems and CPSs in all appli-
cation domains. A presentation 
of the related key technologies 
appears in the core circle of Figure 
1, which presents the vision of the 
ARTEMIS Industrial Association, 
the largest European organization 
focusing on embedded systems, 
CPSs, and related technologies.1

The quest for embedded intel-
ligence requires efficient embed-
ded systems and CPSs, with effec-
tive processors, coprocessors, 
memories, network subsystems, 

special-purpose circuits, operating systems, pro-
gramming environments, and so forth. Considering 
that these systems operate in resource-constrained 
environments, depending on the application domain, 
efficient tools are necessary for design space 

RECENT DEVELOPMENTS ENABLE 
THE CREATION OF AUTONOMOUS 
SYSTEMS THAT ARE SELF-AWARE 
AND ADAPTIVE TO DYNAMIC 
ENVIRONMENTS.

FIGURE 1. Embedded intelligence. (Source: https://artemis-ia.eu/key-technologies 

.html; used with permission.) SoSs: systems of systems; HPC: high-performance 

computing.
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exploration that combines hardware and software 
so as to identify appropriate, effective designs. This 
is in   to the technologies required for efficient and 
cost-effective systems.

The increasing computational capabilities of CPS 
nodes lead to powerful distributed systems that imple-
ment complex processes with high performance and 
reliability. The traditional model—where edge nodes 
collect information and transmit the data to central-
ized systems (or the cloud) for processing and actua-
tion feedback—is rapidly changing to a model of pow-
erful interconnected nodes that execute sophisticated 
processing locally and send information and event 
data only as required to central nodes. This augments 
performance and supports real-time processing, due 

to increased local node processing and a reduced 
centralized processing load, and it improves reliability 
and security, as a result of local storage and less data 
transmission, while saving bandwidth and reducing 
network complexity. Edge computing, coupled with 
AI methods, enables faster processing and decisions 
near data sources. In particular, it strongly supports 
the evolution of autonomous CPSs that are self-aware 
and adaptable to dynamic environments without sac-
rificing their interconnectivity and orchestration for 
higher-level complex applications.

The evolution of “smart” edge systems enables 
highly demanding distributed applications and ser-
vices in several domains; for example, aerial autono-
mous vehicles enable services from fleet management 
to border surveillance. The requirements for increas-
ing functionality and efficiency for hyperconverged 
infrastructure at the edge and those for smart sen-
sors—for example, smart cameras—lead to a need 
for high-performance computing (HPC) architectures 
at the CPS level, where embedded vision systems, 
virtual reality, data fusion, and AI constraints are 

representative examples of the need for sophisticated, 
embedded HPC architectures.

The dramatic penetration of CPSs in increasing 
domains, from avionics to agriculture and from manu-
facturing to health, is disruptive. The rapidly growing 
number of embedded platforms constitutes a strong 
enabler of new business opportunities and models that 
have become feasible. More importantly, such models 
and opportunities are multiplying, and it is certain that 
new, unforeseen services will appear in the future. The 
ability to organize CPSs in domains, develop applica-
tions on them, and manage them effectively requires 
designs that can efficiently synthesize in large sys-
tems, effectively and seamlessly, providing necessary 
special-purpose computational infrastructures at 
will. Technologies that integrate systems and enable 
building systems of systems (SoSs) are fundamental 
in this direction. Software technologies and appropri-
ate software architectures, such as service-oriented 
ones, are necessary to address the needs for evolving 
systems and platforms and for enabling novel services 
and business models.

Safety is a fundamental property of CPSs, consid-
ering their role in multiple processes, including health, 
manufacturing, and transportation (planes, ships, 
trains, and vehicles). Safety engineering for CPSs is a 
cornerstone of the emerging Industry 4.0 and Society 
5.0 concepts based on CPSs. Safety requires the miti-
gation of both accidental failures and cyberattacks 
on computational and network resources and opera-
tions. Security mechanisms are required to protect 
the data on which safety mechanisms rely. It is imper-
ative to develop methods and mechanisms to build 
overall safe and secure CPSs, not only individually 
but in dynamic interconnections when building SoSs, 
where collective properties need to be attained based 
on the safety and security properties of individual 
systems. Safety is a necessary property not only from 
the technological point of view but also the social one 
since it is key to the acceptance and adoption of CPS 
technologies in society.

Exploiting the preceding technologies, CPSs 
achieve embedded intelligence employed in all appli-
cation domains, such as digital industry, transporta-
tion, health, and so on. Such application domains are 
included in the outer cycle of Figure 1, where the list 
is not exhaustive but descriptive at a high level of 

THE EVOLUTION OF “SMART” 
EDGE SYSTEMS ENABLES HIGHLY 
DEMANDING DISTRIBUTED 
APPLICATIONS AND SERVICES IN 
SEVERAL DOMAINS.
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abstraction, indicating priority areas for European 
industry. Specialized domains include smart agricul-
ture, supply chain management, and border surveil-
lance, to name a few.

RESEARCH CHALLENGES
Embedded intelligence presents several research 
challenges in its core technologies. In the remainder 
of this article, we describe several illustrative difficul-
ties. We remark, however, that these are not exhaus-
tive, and, although we organize them according to 
the core technologies of Figure 1, several of them are 
cross domain.

The diverse and increasing CPS application 
domains with strong functional and nonfunctional 
requirements, such as safety, security, real-time 
constraints, and low power consumption, drive the 
new generations of embedded computing systems 
that exploit multicore devices and advanced virtu-
alization technology. New multicore devices that 
have novel architectures with effective memory 
structures (including distributed shared memories), 
high-performance coprocessors (such as graphics 
processing units, tensor cores, and programmable 
cells on field-programmable gate array components), 
and on-chip diagnosis and thermal management com-
ponents provide a continuous challenge that targets 
the development of low-cost and power-efficient 
devices that offer the necessary performance and con-
nectivity for increasingly demanding environments.2

The integration of these components, as well as 
smart sensors, creates significant research obstacles 
at all fronts, from semiconductor design to depend-
able system architectures. The challenges extend to 
the development of integrated development environ-
ments (IDEs) and tools that support the cost-efficient 
and dependable growth of CPSs, enabling design and 
design management at the appropriate abstraction 
levels to manage heterogenous languages and com-
puting platforms, real-time guarantees, dependability 
constraints, and so forth. New models of computing, 
such as approximate, neuromorphic, and AI, provide 
promising results in several domains, including the 
cyberphysical interface. The efficient inclusion of AI 
processing components in embedded devices (for 
application efficiency and system dependability, 
among others) poses significant difficulties at both 

the design and IDE levels. Moreover, the strong prog-
ress at all fronts of embedded systems and CPS design 
creates a significant challenge to standardization and 
certification efforts, especially for safety-related sys-
tems that include AI subsystems.

The increasing interconnection and integration of 
independent, dedicated CPSs to form a higher-level 
single system while maintaining continuous opera-
tion independently of the collaborative system leads 
to the concept of SoSs.3,4 Platforms that integrate 
SoSs for digitalization pose major challenges, such 
as the effective integration of SoSs at the appropri-
ate middleware layer, thus enabling direct interac-
tion among component systems and minimizing 
complexity while ensuring upgradability, scalability, 

and extensibility. Appropriate assessment metrics 
need to be identified to evaluate the performance of 
integrated systems, especially with respect to single 
systems. Platform definitions, in terms of functional-
ity and supported (hardware and software) compo-
nents, are required together with specifications for 
the cyberenvironment where digitalization takes 
place; the scalability and interoperability of the plat-
form are key aspects.

In the context of SoS integration, the concepts 
of the fog, cloud, and IoT, together with the upcom-
ing 5G technology, pose several major difficulties for 
effective and efficient communication architectures. 
All these paradigms foster the integration of SoSs in 
unprecedented ways, supporting a physical and logi-
cal network hierarchy of multiple levels of cooperating 
nodes. Nevertheless, it is necessary to automatically 
orchestrate different devices and layers, enabling 
resource sharing and interactions between nodes at 
the same layer and at different layers in the hierarchy. 
To meet the specific requirements of integrating SoSs, 
the combination of heterogeneous communication 

APPROPRIATE ASSESSMENT METRICS 
NEED TO BE IDENTIFIED TO EVALUATE 
THE PERFORMANCE OF INTEGRATED 
SYSTEMS, ESPECIALLY WITH RESPECT 
TO SINGLE SYSTEMS.
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and application protocols plays a key role. The IoT eco-
system is a perfect illustrative example of the need for 
communication protocol interoperability.5

Safety and security constitute a significant 
challenge to CPSs. Inherently, intelligent embed-
ded systems and CPSs collect data, which is often 
sensitive, and make decisions based on that informa-
tion. Privacy and data integrity form fundamental 
requirements of these systems to protect information 
appropriately and secure correct decisions. Safe and 
secure systems require new security-by-design and 
safety-by-design approaches that minimize attack 
and failure surfaces. The difficulties increase when 
considering CPSs with AI components, where data 
integrity, as well as algorithmic correctness, is a 
strong requirement. The inclusion of the cloud with 
CPS applications and services constitutes a challenge 
by itself, considering the current open problems of 
cloud security. The challenge of safe and secure CPSs 
expands to standardization and certification efforts 
in view of the legal and social aspects of the emerg-
ing CPSs that range from critical infrastructures to 
autonomous vehicles.

Because CPSs are computing systems with com-
plex software components (in addition to hardware), 
software engineering and tools for embedded software 
play an important role in the development of efficient, 
safe, and reliable systems. Methods for software and 
system verification, testing for high-level properties 
(for example, safety and security), runtime verification, 
software synthesis, and software maintenance and 
management become increasingly important under 
the constraints for continuous fail-safe and real-time 
operation.6 Advanced system and software manage-
ment operations, such as the runtime confirmation of 
certification compliance due to multiple stakeholders, 
constitute significant process-dependent challenges.7 
Virtualization software has become a fundamental 
requirement for CPSs, leading to a strong need for 
mechanisms and tools for the efficient virtualization 
of constrained and heterogeneous microprocessor 
and multicore platforms.

New languages and tools for safe application devel-
opment across distributed middleware frameworks 
and virtualized distributed platforms are required. Fur-
thermore, the efficient integration of AI components 
in systems, especially for non-AI expert developers, 

is a significant growing challenge that requires 
fresh approaches to modular design and AI process 
specification. This is also part of the software lifecycle 
management, which is especially demanding in CPSs; 
agile methodologies, continuous integration, DevOps, 
and reconfigurability in real-time distributed and/
or safety-critical systems require novel techniques 
for the constrained CPS environment. Updating CPS 
software in the field is a characteristic example that 
demonstrates the need for methods that guarantee 
CPS properties, such as safety, security, and real-time 
operation, in contrast to traditional software updat-
ing methods. The new software not only needs to be 
verified or tested appropriately when developed but 
inserted in a way that enables real-time updates and 
nondisruptive continuous operation without violating 
functional and nonfunctional properties.

The advances in embedded and CPS technologies, 
coupled with the growth of the IoT, cloud comput-

ing, and AI, have led to disruptive growth models in 
application domains ranging from manufacturing to 
energy and from transportation to health. The increas-
ing adoption of these systems in everyday operations 
places significant requirements on these systems, 
which are application and process dependent, creat-
ing significant new opportunities in interdisciplinary 
research. 
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Developing IoT Systems:  
It’s All About the Software
Thomas Kubitza, Patrick Bader, and Matthias Mögerle, ThingOS GmbH

Albrecht Schmidt, Ludwig Maximilian University of Munich

For the Internet of Things to move from the lab to the real world, software and application 
development must be simplified, and collaboration must increase. We designed an operating 
system and a development environment that facilitate the process and supports a range of users.

The Internet of Things (IoT) is widely discussed 
in research as well as in industry, and everyone 
agrees on its huge potential. However, there is 

a big difference between the concepts, studies, and 
prototypes shown at academic conferences and the 
products and services deployed in industry. Academic 
research has proposed interactive and networked 
versions of everyday objects during the past 30 years, 
including Internet-enabled coffee cups.1 In industry, 
the IoT is more like a natural evolution of factory and 
office automation. Commercially successful con-
nected things are essentially computers in different 
form factors and with tailored software (for example, 
watches and smart TVs and speakers).

MAKING SMART THINGS IS  
STILL HARD

Why are the ideas for enhancing things by adding 

Internet connectivity not catching on? Why are there 
plenty of scientific publications and no products? Sim-
ply put, it remains difficult to develop and deploy IoT 
solutions; there are challenges in hardware, software, 
and business models.2 Embedded devices with a web 
stack are inexpensive (for instance, the ESP8266 costs 
under US$1), but software development for individual 
instances and customers is not. What else is still hard? 
The list includes

 › physical embedding, systems integration, and 
network connectivity

 › software implementation and application 
development

 › security, data protection, and robustness in 
productive environments.

In our experience, cost-effective software devel-
opment for the IoT is the core challenge. Custom soft-
ware development is the primary driver for cost when 
realizing IoT visions in industry. Weiser4 foresaw that 
hardware would be ubiquitous (and cheap) but not 
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Not surprisingly, much of the attention regarding the Internet of Things (IoT) is placed on the things them-
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cess and therefore a broader base of application developers. —Trevor Pering
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the development challenge. Empowering developers 
to create IoT solutions beyond prototyping (of toy-like 
applications) has received little attention and is largely 
ignored in research. IoT requirements outside the lab 
are diverse, and existing conventional solutions are 
the benchmark.

YOUR FOCUS:  
THING OR COMPUTER

We see two main ways of developing IoT solutions:

 › Thing-centric (evolutionary) approach: You have 
a thing, you are good at making it (for example, 
a car), and now you add computing, sensors, 
actuators, and networking to provide new 
functionality (for instance, automated parking or 
self-driving) [Figure 1(a)].

 › Computing-centric (revolutionary) approach: 
You have a computing platform with sensors, 
actuators, and networking that provides 
functionality that previously came from a thing. 
You aim to provide a superior performance and 
experience [Figure 1(b)].

There is no right or wrong approach. Combining 
both is helpful to create the best possible IoT device. 
Traditional manufacturers think thing-centrically, 
whereas computing professionals and disruptive 
developers favor the computing-centric approach. In 
both directions, software development is the key to 
creating the added value.

CHALLENGES IN THE REAL WORLD
Relevant applications on early smartphones (before 
iOS and Android) usually came preinstalled from the 
handset manufacturers. Application development 
was complicated, the access to hardware functions 
was limited, and applications worked well only on a 
small set of devices. Currently, the IoT seems similar. 
IoT applications are written for one specific environ-
ment (for example, smart kitchens, workshops with 
smart tools, or production monitoring). It is not real-
istically possible to deploy one software in an environ-
ment with different hardware or network infrastruc-
tures. Changes to the infrastructure or functionality 
lead to major alterations in the software and, often, 
the redevelopment of the applications. Developments 

FIGURE 1. (a) The thing-centric evolutionary approach versus the (b) computing-centric revolutionary approach. (Source: 

Freepik.com.)
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are costly; hence, making the IoT a viable business 
case requires generalization.

Our vision is to transfer the idea of smartphone 
apps to physical environments, such as rooms, floors, 
and whole buildings and production environments. An 
app that runs in one kitchen should run in any kitchen, 
independent of the specific devices supporting vari-
ous brands. The key challenges are

 › abstracting from devices, specific hardware, and 
networking protocols so that IoT applications 
handle resources they way classical operating 
systems (OSs) do

 › striking a balance between custom develop-
ment that is specific to an environment and the 
provision of prefabricated generic applications

 › enabling increasing levels of customization, 
starting with apps that run in any environment 
and progressing to customer-specific applica-
tions and new drivers

 › supporting operation with local connectivity 
only.

WHAT MAKES A THING “SMART?”
The obvious answer to the question of what makes 
a thing smart is processing, networking, sensors, 
and actuators. Creating smart things always occurs 
in the context of creating things. Designing embodi-
ment is essential. In the following, we share our expe-
rience in the domain of smart furniture outside the 
lab. One thing is typically made up of several oth-
ers: a table includes legs, a top, and connectors, and 
a cupboard consists of a body, boards, doors, and 
hinges. Which part do you make smart? Where do you 
add sensing and actuation, processing, and network-
ing? For furniture, the connectors (including hinges, 
locks, and so forth) and accessories (such as han-
dles) are the components that scale. For example, 
IKEA sells hundreds of different kitchen cupboards, 
wardrobes, and cabinets, but many of them share 

the same hinges. These components are also good 
for detecting interactions.

To decide where to put “smartness,” domain 
experts have to experiment, exploring the added value 
that sensing and actuation can provide in different 
places. The research is hands-on, not theoretical. 
Developers and designers want to try different tech-
nologies and explore how they impact functions. This 
leads us from design thinking to design making.

FUNCTIONAL EXPLORATION: 
DESIGN MAKING

Design thinking has become a key activity when envi-
sioning new products and services. Rapidly creat-
ing ideas has become very popular, and the barrier to 
enter is low. In design thinking, all participants feel 
that they can contribute to the solution. The typi-
cal outcomes are innovative concepts as minimalis-
tic prototypes. In real-world environments, such as 
factory floors and hospitals, it is difficult to trans-
form these ideas into a functional system that can be 
thoroughly evaluated and serve as a product. Design 
thinking is powerful for inspiration and effectively 
pruning “bad” ideas, but for positive evaluations, func-
tional prototypes are required.

With design making, we empower teams to go 
beyond the idea and concept stages. The process and 
goals are similar, but they aim to create fully functional 
prototypes that enable realistic evaluations. We sup-
port prototyping and evaluation through technology 
and a facilitator. The design-making box includes a 
set of typical components (specific to use cases, for 
example, factory automation, smart buildings, health 
applications, and furniture) that include hardware, 
wireless networking, software, and business logic 
(see Figure 2). A facilitator supports the team during 
prototyping, helping to put the computing technology 
into the thing. In our experience, most participants 
can easily program an IoT system by describing what 
functionality they want to a person but hesitate to use 
any programming interface (no matter how simple). 
The key is that the functionality can be created imme-
diately. Participants program by telling their ideas to 
the facilitator, who performs the coding during the 
conversation. Typically, the functionality is not com-
plex, but it is required to experience the smart object 
during the evaluation.

THE INTERNET OF THINGS IS WIDELY 
DISCUSSED IN RESEARCH AS WELL AS 
IN INDUSTRY, AND EVERYONE AGREES 
ON ITS HUGE POTENTIAL.
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A person facilitating the development lowers the 
barrier to entry and levels the ability to program in 
interdisciplinary teams. He or she provides support 
to envision, prototype, and try ideas for new products 
and services through quick iterations (20 or more in a 
single-day workshop are implemented and tested). It 
is crucial to create functional prototypes and enable 
teams to understand the required steps and trajec-
tory to move the mock-ups toward useful services or 
products. Once experienced, this process empowers 
teams to fundamentally rethink their products.

COMPUTER SCIENTISTS ARE NOT 
UNIVERSAL EXPERTS

The design-making approach jump-starts interdisci-
plinary innovation. The provided tools are crucial since 
they limit what participants will imagine and try. Our 
guiding principle is to have no barriers to entry and, 
at the same time, enable complex issues to be imple-
mented. Traditional embedded-systems develop-
ment tools can be used only by software developers. 
In research, it seems that computer scientists create 
smart things, but what they actually make are proofs 
of concept for smart things. Creating real products 
poses many challenges for which skills beside com-
puter science are essential.

ThingOS: OS AND DEVELOPMENT 
SUPPORT

During our research and work with customers, we real-
ized that IoT OSs and development support are closely 
linked and that tight integration is important. This 
insight was new for us in the IoT context, but looking 

back at UNIX and C, it is not surprising. We have to 
acknowledge that potential development partners are 
experts at envisioning and making things but have lit-
tle knowledge of computer science and are often unin-
terested in learning about software development. 
With the ThingOS platform, we created an OS and 

web-based environment to ease IoT development for 
interdisciplinary teams; see Figure 3 and Kubitza.3 The 
most important design choices were

 › creating a technology-neutral abstraction layer 
for sensors, actuators, and network protocols

 › requiring no installation for the IoT-application 
developer

 › using JavaScript as the programming language 
to open the IoT to the web-development 
community

 › providing an integrated development environ-
ment (IDE) that is adaptive and context-aware

 › working with IoT-application templates as 
always-functional starting points

 › having an IoT app store, enabling the quick 
deployment of applications

FIGURE 2. (a) A prototyping box for factory automation with different components and (b) a created prototypical model system 

developed in a design-making workshop that could be transferred with the same IoT software to a full-scale deployment. For a 

2-min video showing this in detail, visit https://www.youtube.com/watch?v=Wyoz0Z-5gf0.

EMPOWERING DEVELOPERS TO 
CREATE IOT SOLUTIONS BEYOND 
PROTOTYPING (OF TOY-LIKE 
APPLICATIONS) HAS RECEIVED LITTLE 
ATTENTION AND IS LARGELY IGNORED 
IN RESEARCH.
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 › providing security in the background.

These decisions were guided by our goal to broaden 
the set of people who can create IoT applications. One 
key was to eliminate the installation of tool chains, driv-
ers, and IDEs, which are typical for embedded develop-
ment. Using JavaScript enabled us to include web and 
app developers who have a hard time with traditional 
IoT-development environments but are keen on novel 
applications and services. The development environ-
ment’s user interface (see Figure 3) supports different 
views and levels of abstract. The abstraction layer that 
understands the capabilities of sensors, actuators, 

devices, and protocols facilitates 
transferring applications between 
different environments. The IDE 
also supports the exploration of 
devices that enter the vicinity and 
are programmable.

The typical steps for program-
ming an IoT-System are

 › connect to the local network 
provided by one of the 
ThingOS devices

 › open the online IDE based 
on web technologies in the 
browser

 › interactively explore the avail-
able devices (optional)

 › chose an application template 
for the required functionally 
and run it

 › configure the functionally to 
the specific environment and 
use case (optional)

 › add functionality by program-
ming components (optional)

 › provide applications to 
others through the app store 
(optional).

To move the IoT from research 
to real-world deployment, soft-

ware and application development 
has to be simplified for a broad 
base of programmers. Enabling 

efficient collaboration between the people who make 
things and those who make software is key. Making a 
clever physical design of a thing will massively ease 
the development of its functionality (for instance, 
the placement of sensors and the physical shape and 
size). Development tools must support collaboration. 
The IoT on a case-by-case basis will not work com-
mercially, hence

1. consider, explore, and select which part of the 
thing to make smart to create the most viable 
product and gain from efficiencies of scale

2. make applications that are independent 

FIGURE 3. (a) The development view once a phone is added to the IoT system. Every 

property can be addressed by other IoT components through JavaScript calls. (b) 

All active and programmable devices in the IoT environment are shown. The “edit” 

button opens a dialog box to manipulate them.
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of the actual hardware to distribute 
software-development costs across many 
instances.

In our work, we have achieved this by extending 
design thinking into design making, through an OS 
that supports abstraction in heterogeneous settings 
and by creating an environment to support a broad 
range of developers. 
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Recently, following the rapid commercial deployment of 5G networks, next-generation 
mobile communication technology (6G) has been attracting increasing attention from 
global researchers and engineers. 6G is envisioned as a distributed, decentralized, and 
intelligent innovative network. However, existing application provisioning is still based 
on a centralized service architecture, ubiquitous edge computing, and decentralized AI 
technologies have not been fully exploited. In this article, we analyze the problems faced 
by existing centralized service provisioning architecture, and propose design principles 
for a decentralized network and service architecture for a future 6G network. Finally, 
we discuss several open research problems to inspire readers to address these.

Due to the large number of commercial 
applications of 5G networks worldwide, 
potential 6G technologies are attracting 

attention from both academia and industry. Although 
5G has achieved significant improvements in terms 
of communication performance, it remains difficult 
to meet demand for more intelligent communication 
in terms of information speed, multidomain cover-
age, artificial intelligence (AI), and security.1 Recently, 
several governments have launched 6G projects to 
explore the requirements and key technologies of 
the next-generation mobile communication network. 
However, existing visions and discussions of 6G mainly 
focus on innovative wireless communication technolo-
gies, mobile edge computing (MEC) and AI,2 and there 
is a lack of deep and innovative insights into networking 
and service provisioning mechanisms. It is therefore 

necessary to create a blueprint for a disruptive service 
provisioning mechanism in future 6G networks.

Following the continuous evolution of 5G networks, 
6G is envisioned as an ultrabroadband, ultra-low-delay, 
full-dimensional coverage (terrestrial, aerial, space, 
and maritime domains) ubiquitous intelligent network 
with native AI and security. 6G will seamlessly integrate 
communication, computing, control, caching, sensing, 
positioning, and imaging features to support various 
Internet of Everything (IoE) applications. In contrast 
to 5G, 6G will evolve from “human-machine-thing” 
interactions to “human-machine-thing-genie” interac-
tion,3 and will become a highly autonomous and intel-
ligent ecosystem. Several innovative applications will 
become reality, such as holographic communications, 
brainwave-machine interaction applications, tactile 
mixed reality (MR) experiences (including vision, hear-
ing, smell, taste, and touch), and high-precision manu-
facturing.4 With the continuous maturity of AI tech-
nology and the rapid reduction in related hardware 
costs, increasing numbers of devices will have native 
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AI functions, such as smartphones, AR/VR glasses, 
smartwatches, headsets, TVs, loudspeakers, and 
vehicle-mounted devices. Based on the user's move-
ments, these ubiquitous devices will dynamically and 
autonomously collaborate with each other to achieve 
better user experience. 6G will be a highly dynamic, 
autonomous, decentralized, and intelligent network in 
which network nodes will collaborate autonomously 
and dynamically, user data will be stored in the net-
work in a decentralized way, and services will migrate 
on demand. This new ubiquitous, decentralized, 
AI-driven flat 6G network needs a corresponding new 
decentralized service provisioning mechanism.

However, although MEC has pushed computing 
closer to the user, and the device-to-device (D2D) 
model has enabled nearby mobile devices to communi-
cate with each other directly, the 5G network remains a 

centralized network and service provisioning architec-
ture in terms of the data storage and access, service 
running mechanism, and application protocols used. 
The service provisioning mechanism for the existing 
5G network has not changed a great deal compared 
with the 4G network. We therefore need to design a 
novel service provisioning mechanism to meet the 
tremendous shift toward decentralization in the future 
6G network.

In this article, we first explain the decentralized 
trends of the 6G network and its new characteristics. 
We then analyze and discuss the problems faced by 
existing centralized service provisioning. Finally, we 
propose some design principles for a future decentral-
ized 6G service provisioning mechanism, and discuss 
open research issues related to this new decentralized 
computing paradigm.

FIGURE 1. Vision for 6G: Integrated, ubiquitous, intelligent, and decentralized.



22 ComputingEdge  January 2021

INTERNET OF THINGS, PEOPLE, AND PROCESSES

6G VISION AND ITS NEW 
CHARACTERISTICS

Although 6G is not yet the subject of a global consen-
sus, some potential new characteristics and trends 
have been widely discussed. In this section, we pres-
ent a comprehensive vision of the future 6G network 
from multiple perspectives, as shown in Figure 1.

1. Network coverage view: With the expansion 
of human activities, the existing closed and 
vertical dedicated networks and terminals 
cannot meet the demand for ubiquitous mobile 
communication anytime and anywhere. Unlike 
the previous 1G to 5G networks, 6G will extend 
mobile communication coverage in an unprec-
edented way from terrestrial areas to the aerial, 
space, and maritime domains. A ubiquitous, 
integrated, multidimensional, and full-coverage 
mobile communication network will be 
available anywhere in the 6G era. Everything 
(including real-world objects and digital objects 
in virtual worlds) will be able to be connected 
with everything else, and a new IoE distributed 
ecosystem will be established based on this 
all-round connectivity.

2. Capability convergence view: With the 
enhancement of terminal capabilities, the 
large-scale deployment of MEC infrastruc-
tures5 and the widespread applications of 
IoE, communication is no longer the only goal 
of the 6G network. The convergence of com-
munication, computing, control, storage, and 
sensing capabilities will be the new trend in 
the 6G network. Based on these capabilities, 
increasing numbers of terminals and network 
nodes will become intelligent, autonomous 
information processing entities and act as both 
information producers and consumers.

3. Interaction space view: Based on the charac-
teristics of eMBB, mMTC, and uRLLC, 5G has 
begun to support “human-machine-thing” 
interactions, which bridge the domains of cyber 
space, physical space, and society. 6G will 
further deepen and expand interaction spaces. 
Following the advances in wireless brain–
computer interaction (BCI) technologies, the 
use of consciousness-based communication 

and control will create some new application 
scenarios. For example, brain–computer 
interfaces may be used to interact with 
ambient smart devices such as XR glasses, TV 
sets, or loudspeakers. 6G will also evolve from 
current “human-machine-thing” interactions to 
“human-machine-thing-consciousness” inter-
actions. The real world and virtual world will be 
perfectly integrated, and the era of augmented 
reality (AR)/MR is imminent,6 in which physical 
and digital objects coexist and interact in real 
time (i.e., dual worlds).

4. AI view: In the initial design phase of the 5G 
network, AI technologies were not sufficiently 
mature to act as an enabling technology. 
However, following rapid advances in big 
data, cloud computing, neural network, and 
dedicated chip technologies in recent years, AI 
technologies have begun to be employed in 5G 
network management, smart mobile phones, 
and various applications in a patchwork way. 
AI is considered the most innovative enabling 
technique for 6G, and will be an innate feature 
of the network from the application layer to 
the physical layer. In the 6G era, end devices 
with various AI capabilities will seamlessly 
collaborate with a variety of edge and cloud 
resources.7 With the maturity of AI technology 
and the reduction in AI hardware costs, the 
number of smart end devices in use in daily life 
will constantly increase. Decentralized and col-
laborative AI services among distributed end 
devices and network nodes will also become a 
trend in 6G.

5. Network architecture view: As mobile com-
munication networks have been updated from 
1G to 5G over the decades, they have gradually 
evolved from a closed dedicated network to 
an open converged network based on general 
IT technologies. Network architectures are 
becoming increasingly flat, and the original 
customized hardware appliances used for 
each network function have been replaced by 
general IT devices and software platforms. This 
is particularly true for the 5G network, in which 
software-defined networks, network function 
virtualization, and network slicing technologies 
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have been fully employed. To a certain extent, 
network carriers can utilize different software 
and processes in a flexible way on top of 
standard high-volume servers, switches, and 
storage devices, and can customize different 
virtual networks in order to meet demand aris-
ing from differentiated application scenarios 
such as high bandwidth, low latency, or massive 
numbers of connections. In addition, MEC and 
D2D communication technologies promote 
the migration of computing and service 
processing capability from the cloud platform 
to the network edges.8 With enhancements 
to smart user and network equipment, edge 
or fog computing will become as important 
as cloud computing. Increasing numbers of 
local communication clusters will be formed 
dynamically and autonomously, and applica-
tions will be processed both directly and locally. 
The network edge will be highly decentralized, 
and will take on some of the functions of the 
core network and cloud platform. In this model, 
the network edge is no longer simply an access 
network, but comprises a large number of 
ubiquitous, autonomous local networks that 
can integrate communication, computing, 
control, storage, and sensing capabilities. The 
network edges and core networks will have a 
more peer-to-peer structure, and in general, the 
network architecture will be much flatter and 
more flexible.

6. Application architecture view: Based on the 
above analysis, it can be seen that 6G will be 
a ubiquitous, distributed, decentralized, and 
intelligent innovative network. The existing 
application provisioning architecture mainly 
adopts B/S or C/S architectures, which were 
originally designed for centralized network. 
Clients often interact with centralized, specific 
application servers, and database servers in 
order to deal with user requests. In contrast, 
6G will become more decentralized due to 
the long-term evolution of the 5G network. 
The application provisioning architecture of 
6G will also therefore change significantly to 
cater to this shift. In the future 6G network, 
peer-to-peer and ad hoc networks will become 

more pervasive and popular, and current 
cloud-based serverless application provision-
ing architecture will gradually evolve toward a 
decentralized peer-to-peer application provi-
sioning architecture. User data will be stored 
on a decentralized peer-to-peer network, 
and business processing logic will be divided 
into stateless and independent fine-grained 
services that can be migrated and run on any 
network node on demand.

EXISTING CENTRALIZED 
APPLICATION PROVISIONING 
MECHANISM AND RELATED ISSUES

Since the aforementioned vision for 6G and its new 
characteristics differ markedly from the existing 5G 
and 4G mobile networks, it is necessary to analyze and 
discuss the problems faced by current centralized ser-
vice provisioning. After 40 years of development, the 
existing centralized application provisioning architec-
ture has gradually become unsuitable for the applica-
tion development needs of 6G.

1. Limitations on B/S or C/S application architec-
ture: Most existing applications employ B/S 
or C/S application provisioning architecture, 
which was originally designed for the era of 
thin clients and powerful servers. An applica-
tion is provided by a collaboration between 
user devices and edge/cloud servers. In a 
centralized architecture, applications are 
highly dependent on dedicated cloud servers, 
and information storage and business logic 
are all provided by servers. This architecture 
gives rise to the high computing, storage, 
and bandwidth costs on the server side. With 
the emergence of MEC in 5G, some of these 
application functions can now be offloaded 
to edge servers, and a “terminal+edge+cloud” 
collaboration computing architecture is being 
developed. However, 5G applications are only 
beginning to allow for distributed computing, 
let alone a decentralized computing model. 
Following significant advances in hardware 
and software, the capability of 6G terminals 
will be further improved, and some tasks will 
be processed by the local user terminal or by 
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collaborating with ambient devices or edge/
cloud servers. It is therefore necessary to 
explore a novel application architecture to 
support this ubiquitous decentralized comput-
ing paradigm.

2. Disadvantages of the centralized data model: 
In the existing centralized application archi-
tecture, data are generally stored in specific 
cloud servers or terminal devices, and are 
cached on edge servers or CDN networks. 
Data storage and access are all controlled by a 
centralized authority such as Yahoo, Facebook, 
or YouTube. This centralized data model results 
in some potential problems such as censorship, 
privacy, data leakage, and data control rights. 
For example, if the central point is hacked, the 
entire user database is at risk. In addition, the 
trust problem of the centralized authority is 
often challenged. In fact, some Internet service 
providers use the data for their own benefit, 
such as selling it to advertising companies, 
meaning that the privacy and security of user 
data are not well protected.

3. End-to-end application protocols: Due to 
the use of a centralized data storage and 
service operation mechanism, most of the 
existing application protocols are based on an 
end-to-end communication model rather than 
a peer-to-peer model, and client requests need 
to be routed to dedicated application servers 
to be processed. Existing application protocols 
(such as HTTP) were originally designed for B/S 
or C/S application architectures, and are not 
suitable for this new dynamic and opportunistic 
form of connectivity and the ubiquitous edge 
and decentralized computing paradigm of 
the 6G network. In the era of 6G, application 
protocols will enable data access and service 
coordination on a peer-to-peer basis over a 
ubiquitous distributed network.

4. Tight coupling of user data with specific appli-
cations: Following the rapid development of the 
mobile Internet, increasing numbers of people 
rely on service provisioning by a few Internet 
giants such as Yahoo, Google, Facebook, 
Twitter, and WeChat, and the centralization of 
information has become more pronounced, 

with services and content being gradually 
aggregated by a few Internet oligarchs. This 
model of centralized information organization 
creates many information islands, and in this 
paradigm, users have no right to control their 
data. User data are tightly coupled with specific 
apps, and data utilization across different apps 
is often restricted due to commercial competi-
tion. These centralized information islands have 
gradually come to hinder the free dissemination 
of information.

5. Shortcomings of centralized AI: In recent years, 
due to the development of powerful cloud com-
puting capability and big data, AI has become 
increasingly widespread. However, existing 
AI is mainly organized using a centralized 
application model. More specifically, massive 
training datasets are very valuable assets to 
enterprises. Training datasets and the creation 
and training of models are also controlled by 
a small number of large organizations, which 
increases the gap between large companies 
with access to large, labeled datasets, and 
smaller companies. At the same time, the 
centralization of model training requires the 
transmission of data from end devices to cloud 
servers, often resulting in high transmission 
and computing costs and giving rise to user 
privacy protection issues. Furthermore, cur-
rent AI models are always deployed on either 
cloud/edge servers or end devices using a 
centralized operation model, without allowing 
for the efficient utilization of resources such as 
ubiquitous distributed network nodes.

DECENTRALIZED APPLICATION 
PROVISIONING ARCHITECTURE 
FOR 6G

Decentralized Application 
Provisioning Mechanism
Based on the above analysis, we expect that the appli-
cation provisioning mechanism in 6G will change sig-
nificantly from the existing centralized application 
mechanism, as shown in Figure  2. Some design prin-
ciples for a future decentralized 6G application provi-
sioning mechanism are presented below.
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1. Decentralized serverless 
computing architecture: In 
the future 6G network, the 
communication, computing, 
and storage capabilities 
of network nodes will be 
greatly enhanced. The 
traditional client–server 
boundary will be elimi-
nated, and each network 
node (including various 
terminals, base stations, 
gateways, routers, servers, 
etc.) will act not only as 
an information publisher 
but also an information 
consumer. In 6G, the decentralization of the 
network infrastructure will be realized, and the 
whole network will become a service running 
environment. A microkernel-based distributed 
operating system will become popular, and this 
will be adaptively deployed on various types 
of hardware, including smartphones, AR/VR 
glasses, smart displays, wearable devices, in-car 
entertainment systems, and other IoT devices. 
The service environment will gradually expand 
from the existing cloud infrastructure to the 
network edge and ubiquitous end devices. 
The overall business logic will be composed 
of multiple fine-grained micro services; these 
will not be deployed on dedicated servers, and 
will be able to migrate to any network node 
on demand. Front-end client applications will 
resolve the application description file and 
invoke the related service components directly.

2. Decentralized data model: With the large-scale 
deployment of edge/fog computing, it is now 
possible to establish a ubiquitous decentralized 
storage infrastructure to address the problems 
faced by the existing centralized cloud stor-
age model. Compared with the centralized 
data model, data will no longer be stored on 
specific servers, but will be distributed over a 
peer-to-peer network. This decentralized data 
model promises even greater advantages, 
such as efficient scalability, reliability, privacy, 
and data immutability. Since all the data are 

distributed among the different network nodes, 
decentralized data networks are better able to 
withstand massive user requests distributed 
between the nodes, since the pressure of these 
requests no longer falls on a few computers but 
on the network as a whole. This scheme can 
also deal with DDoS attacks more effectively. 
In addition, a decentralized data model can 
reduce dependence on the infrastructure of 
specific Internet giants, and will facilitate the 
disintermediation of the mobile Internet.

3. Decoupling of data and applications: In order to 
return data control rights to the users them-
selves, it is necessary to decouple user data 
from specific silo applications. In the future 6G 
network, user-generated data such as videos, 
social media posts, health data and tracking 
information, etc., will be completely controlled 
by the users themselves. These data will be 
stored in a decentralized P2P network in which 
users have the right to authorize certain appli-
cations to manipulate their data, and decide 
which users to share these data with. This new 
mechanism will facilitate information sharing 
and dissemination among different apps. For 
example, a user's profile information can be 
shared by different apps, thus avoiding the need 
for each app system to save a copy of the user's 
information. This scheme can also avoid data 
leakage by third-party application providers.

4. Decentralized and collaborative AI: In the 6G 

FIGURE 2. Evolution of 6G decentralized application provisioning.



26 ComputingEdge  January 2021

INTERNET OF THINGS, PEOPLE, AND PROCESSES

era, each network node can store and process 
data and can autonomously communicate 
and seamlessly interact with other ambi-
ent devices. Following the development of 
ubiquitous computing infrastructure, existing 
centralized AI will gradually evolve to a decen-
tralized and collaborative model. In contrast 
to traditional centralized AI, in which all data 
samples are uploaded to dedicated cloud 
servers, the decentralized approach will train 
a model across multiple decentralized edge 
devices or servers with local data samples; this 
will be done without sharing data, and instead 
parameters will be simply exchanged between 
these local models at a certain frequency to 
generate a global model. This approach can 
efficiently avoid the need for transmission and 
centralized storage of training data, and can 
also address several critical issues such as 
data privacy, data security, data access rights, 
and heterogeneity of data. In addition, aided 
by advances of lightweight model technology, 
AI models can be deployed on any devices, 
from mobile phones to massive numbers of IoT 
devices. AI will be able to run, train, and even 
make decisions on local devices in this type 
of decentralized network. The autonomous 
collaboration of multiple network nodes is 
controlled by a distributed group of intelligent 
agents, which will be able to solve com-
plex planning and decision making problems.

Comparison of Centralized and 
Decentralized Application Solutions
In Figure 3, we use a mobile search application as an 
example to illustrate the significant changes in exist-
ing centralized and future decentralized application 
provisioning mechanisms.

Figure 3(a) shows the existing centralized Google 
mobile search application mechanism. It can be seen 
that the application is mainly processed via a col-
laboration between the mobile browser and dedicated 
cloud application servers, and the network is only 
responsible for the transmission of information. When 
the user inputs the Google URL, the mobile browser 
will query the IP address corresponding to the URL 
using the DNS service and sends the Web page request 

to Google's dedicated cloud server, which returns the 
search page. After the user inputs some search con-
tent (“Titanic” in this example), the browser will send 
this search HTTP request to the Google search server, 
which generates the results pages. The user may then 
click a link to to play “Titanic” on the YouTube website. 
The browser will obtain the content from the YouTube 
cloud servers or nearby CDN networks.

In contrast to this existing centralized mechanism, 
a decentralized mechanism will be very different in 
terms of the data storage, server architecture, and 
communication protocols used, as shown in Fig-
ure 3(b). There are no dedicated cloud application and 
database servers, and the whole network acts as a 
decentralized communication, computing, and stor-
age infrastructure. The browser will get the search Web 
page from a distributed file system in a peer-to-peer 
way, using a distributed hash table. Segments of Web 
pages may be located on nearby mobile phones, PCs, 
edge, or cloud server nodes. After the user inputs the 
search content “Titanic,” the AI-enhanced browser can 
process and analyze the search input by itself, using 
a lightweight AI model for natural language process-
ing, and can collaborate with ambient AI-enhanced 
devices to generate the search results pages. When 
the user clicks the YouTube link in the search results 
page, the media player will fetch content segments 
from a distributed peer-to-peer network.

CONCLUSION AND OPEN ISSUES 
FOR FUTURE RESEARCH

Decentralization has become a likely trend for a future 
6G network. In this article, we mainly focus on the 
potential disruptive changes to application provision-
ing mechanisms in the 6G era. By analyzing the issues 
faced by the existing centralized infrastructure, we 
propose some insights for a decentralized application 
provisioning mechanism for the future 6G network.

However, until now, there have been no comprehen-
sive discussions of 6G from this perspective. Several 
issues are still open, and we describe these here to pro-
vide readers with inspiration to address these issues.

1. Decentralized operating system for ubiquitous 
computing: In view of the IoE application 
scenarios envisaged for 6G, it will be necessary 
to develop a decentralized operating system for 
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a dynamic, autonomous, collaborative network, 
which can efficiently enable peer-to-peer 
communication, decentralized data storage 
and access, on-demand service migration and 

deployment, and flexible adaptation of heterog-
enous devices such as servers, mobile phones, 
TV sets, vehicle-mounted systems, and other 
IoT devices.

FIGURE 3. Differences between existing centralized and future decentralized application provisioning approaches.
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2. Collective decision making by decentralized AI: 
Decentralized AI has become one of the most 
promising trends for the next phase of AI. With 
the aid of D2D and MEC, decentralized and 
collaborative AI services among distributed 
network nodes will become an important 
enabling technology for 6G. The issues of how 
to integrate these scattered AI capabilities over 
distributed nodes and find the optimal combi-
nation of services to provide the best experi-
ences for users are worthy of in-depth study 
and exploration. This will involve coordination 
between and decisions by multiple intelligent 
agents, and thus constitutes a collective 
decision-making issue.

3. Disruptive influences of the decentralization 
network and service model: A decentralization 
model will bring about disruptive impacts on 
existing application provisioning mechanisms 
in terms of business models, products, ser-
vices, and ecosystem roles. It will inevitably 
weaken the authority of central entities and 
will affect the commercial interests of the 
existing Internet giants. At the same time, it 
will also create impacts on the infrastructure 
governance of telecom network operators. 
The problem of how to effectively activate and 
coordinate multiple stakeholders (individual 
users and other enterprises) to participate 
in the provisioning of network resources in a 
future 6G ecosystem is a newly emerging issue. 
It is therefore necessary to explore the strong 
potential influence on the operation of network 
infrastructure. 
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We introduce a novel algorithm that turns a flash selfie taken with a smartphone into a 
studio-like photograph with uniform lighting. Our method uses a convolutional neural 
network trained on a set of pairs of photographs acquired in a controlled environment. For 
each pair, we have one photograph of a subject’s face taken with the camera flash enabled 
and another one of the same subject in the same pose illuminated using a photographic 
studio-lighting setup. We show how our method can amend lighting artifacts introduced 
by a close-up camera flash, such as specular highlights, shadows, and skin shine.

Photographs taken with mobile devices are 
nowadays predominant on the Internet, 
including the web-based services dedicated 

to professional photography such as Flickr and 500px. 
This is due to the steady improvement of built-in digi-
tal cameras in smartphones, which has made them 
a default choice of many for taking pictures. Under 
favorable lighting conditions, smartphone picture 
quality has reached that of digital reflex cameras, 
but smartphones are not able to capture artifact-free 
images in low-light conditions. This is due to their 
sensors’ size, a constraint that is not straightforward 
to solve because of the little room available in mod-
ern phones. Therefore, taking pictures in low light 
often triggers the camera flash, which is typically a 
low-power LED flash mounted side by side with the 
camera lens that produces several artifacts. Selfies 
are one of the most common forms of photographs 
taken with a smartphone. This practice consists of 
taking a picture of one's face by holding the phone in 
one hand or by using a so-called “selfie stick.” Also, 

selfies are often low-light flash photographs, which 
is an unfavorable combination that produces images 
with specular highlights, sharp shadows, and flat and 
unnatural skin tones. In this article, we explore the 
possibility of turning flash selfies into studio portraits 
by employing a convolutional neural network (CNN). 
Doing so is a challenge for three reasons. First, it 
involves handling both global and local discriminant 
features, e.g., skin tone and highlight, respectively. 
Second, it needs to match how humans expect an 
image to look when a flash is not used. Finally, these 
two requirements have to be met in the domain of 
human faces, where people are very good at detecting 
any type of inconsistencies.

Smartphone flash selfies share several common 
traits for a well-defined subdomain of photos that our 
proposal is able to address: they are three-quarter 
or front single-face portraits, taken at close range, 
with a single flash colocated with the camera lens. 
Our approach is based on CNN training with a set 
of pairs of portraits (see Figure 1): one image with 
smartphone flash and one with photographic studio 
lighting (a “ground truth” image). Each pair is taken as 
simultaneously as possible, to keep the pose of the 
subject similar. The flash correction problem applies 
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to wider application domains than just selfies, but 
generating the collection of images needed for this 
broader purpose would be an arduous undertaking, 
with hundreds or thousands of images required. 
After training our CNN with these image pairs, our 
model can be used to give a studio-lighting appear-
ance to a broad range of real-world smartphone flash 
selfie images.

DEEP FLASH
We developed an encoder–decoder CNN based on two 
subnetworks: the first network performs the encod-
ing of the input flash image to create a deep feature 
map representation; the second network recreates 
the image starting from the encoder's output while 
removing the flash defects. We use Visual Geome-
try Group's VGG-168 network to perform the image 
encoding that consists of 16 layers: the first 13 are con-
volutional layers and the last 3 are fully connected lay-
ers. We used only the convolutional layers of VGG-16, 
which are structured into five groups: the first two 
groups consist of two layers and the last three groups 
consist of three layers, as shown in Figure 2. There are 
three operations performed by each CNN layer: sev-
eral parallel convolutions, nonlinear activation using 
Rectified Linear Unit (ReLU) functions, and max pool-
ing operations.9

The decoding task was performed using a 
decoder component that is based on Eilertsen  et 
al.'s U-Net-based approach.5 The output produced 
from VGG-16 represents an input for the decoder 
after a further convolution operation. We use batch 
normalization after each convolution to normalize the 

output distribution of each layer in order to provide a 
valid input for the next layer. To this end, batch nor-
malization constrains the activation function input to 
have unit variance and mean zero. After each batch 
normalization, the output tensor crosses through the 
next activation function, which introduces a nonzero 
gradient for the next inputs. Decoder layers consist of 
operations such as convolutions, batch normalization, 
deconvolutions, and concatenations.

To reduce the “vanishing gradients” problem that 
affects very deep neural networks, we employed a 
residual learning network-based approach (https: 
//en.wikipedia.org/wiki/Residual_neural_network). 
The vanishing gradients problem concerns the back-
propagation phase, where an inverse crossing of the 
network is performed to update the weights through 
the gradient of the error function. When a network is 
composed of many layers, the weight updating can 
be reduced so much from the last to the first layers 
that the updates in the first network layers become 
inefficient, thereby stopping the training. A way to 
solve this problem is to concatenate each block's 
output of the VGG-16 with its counterpart in the 
decoder using concatenation layers (see Figure 2). 
Another reason for our use of residual learning is that 
it recovers information lost through the convolutions 
of the encoding phase, helping the decoder in recon-
structing the output image. Our encoder–decoder 
structured neural network is also able to recreate 
similar input images of faces taken in a different RGB 
lighting mode. Finally, we use deconvolutional layers 
to reconstruct the output image, starting from the 
VGG-16 output tensor.

FIGURE 1. Two examples from our results. The split images show a comparison between the input and the output of our algorithm.
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Training
To minimize the loss function, we train our neural net-
work using an algorithm called an Adam Optimizer 
(https://en.wikipedia.org/wiki/Stochastic_gradient 
_descent), which is a stochastic gradient descent 
technique with a special way of managing its learn-
ing rate. As the initial configuration of the Adam 
Optimizer, we set the learning rate to 10−5, set the  
value (useful for avoiding divisions by zero) to 10−8, 
and set the minibatch size to 4. The choice of mini-
batch size value is due to the GPU capability and the 
input image dimension. To compensate for the limited 
amount of available training data and to increase the 
generalization level, we use transfer learning (https: 
//en.wikipedia.org/wiki/Transfer_learning), a tech-
nique that extends learning achieved in one domain 
to related problems.

In particular, the weights of the VGG-16 were ini-
tialized through a pretrained model originally used for 
face recognition.10 This model was trained through a 
dataset of 2.6 million faces belonging to 2600 identi-
ties, using an NVIDIA Titan Black GPU. Our decoder 
weights were initialized using a truncated normal dis-
tribution, which ensures that the weight's initializa-
tion has unit standard deviation and mean zero. This 
approach avoids dissolution or increasing of the gra-
dient, decreasing the probability of introducing criti-
cal errors during training. For the initialization of the 
last decoder layer, we use Xavier (http://proceedings 
.mlr.press/v9/glorot10a/glorot10a.pdf), which ensures 

that the signal passing through the neural network is 
propagated accurately and that the weights are nei-
ther too small nor too large.

Encoding
To implement our solution, we chose an encod-
ing that decouples the high-frequency details such 
as hair or facial features from low-frequency details 
such as global skin tone. To this end, we employed the 
well-known bilateral filter (https://en.wikipedia.org 
/wiki/Bilateral_filter), which is a nonlinear filter that 
is frequently used to smooth images while preserv-
ing edges. Such filtering was used on both the flash 
and uniformly lit (ground truth) images of our data-
set before training our neural network. Once the filter 
was applied, the flash-filtered image was used as the 
input to our neural network and the target was the dif-
ference between the filtered flash image and filtered 
ground truth image normalized to [0, 1]. The use of this 
type of encoding reduces artifacts such as blur due to 
the small misalignment of facial expressions between 
the flash and ground truth images, closed/open eye, 
lips position, and other facial landmarks.

Loss Function
The method described in the previous section allows 
us to preserve the low frequencies from the original 
nonfiltered image for use in subsequent steps. We min-
imize the distance between the low frequencies of the 
input and ground truth as follows:

FIGURE 2. Architecture of our encoder–decoder, with its typical U-shape. The first 13 blocks represent the convolutional layers 

of VGG-16, which perform the image encoding. The second part reconstructs the output image and has several convolutional 

and deconvolutional layers. Arrows show the shortcut connections to the blue blocks of the decoder from their counterparts in 

the encoder.
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[0, 1]. The use of this type of encoding reduces

artifacts such as blur due to the small misalign-

ment of facial expressions between the flash and

ground truth images, closed/open eye, lips posi-

tion, and other facial landmarks.

Loss Function

The method described in the previous sec-

tion allows us to preserve the low frequencies

from the original nonfiltered image for use in

subsequent steps. We minimize the distance

between the low frequencies of the input and

ground truth as follows:

Lðyd; tdÞ ¼ 1

3N

X
i

�
ðydi � E½ydi�Þ � ðtdi � E½tdi�Þ

�2

(1)

where

ydi ¼ BLðxi; ss; srÞ � 2yi þ 1
tdi ¼ BLðxi; ss; srÞ � 2ti þ 1:

(2)

Equation (1) is our objective (loss) function to

be minimized, in whichN represents the number

Figure 2. Architecture of our encoder–decoder, with its typical U-shape. The first 13 blocks represent the

convolutional layers of VGG-16, which perform the image encoding. The second part reconstructs the output

image and has several convolutional and deconvolutional layers. Arrows show the shortcut connections to the

blue blocks of the decoder from their counterparts in the encoder.
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Equation (1) is our objective (loss) function to be 
minimized, in which N represents the number of pixels, 
BL(xi, s, r) is the CNN input, xi is the flash image, yi  is 
the predicted difference of the CNN, and ti = BL(xi, s, 

r) – BL(oi, s, r), with oi being the ground truth.
We normalized our target difference images into 

the range [0,… , 1] in order to avoid negative values 
affecting the CNN convergence given its activation 
functions. Then, values are remapped into the range 
[–1, 1] and subtracted from the input values. We per-
formed the mean subtraction for each color channel 
of each image pixel by pixel, but only in the evaluation 
phase of the objective function. This operation was per-
formed to distribute in a balanced manner the weights 

of each image across the training. In this way, each 
image gives the same contribution to the training, no 
more or less important than the others. In contrast to 
the classical method of subtracting from each image 
the mean computed across the whole training dataset, 
we subtracted the mean for each image to remove the 
average brightness from each pixel. This operation can 
be performed because our image domain consists of 
stationary data for which the lighting parameters are 
well defined and always the same for both the input 
and the output. For further details, see the article by 
Capece  et al.9

DATASET CREATION
In order to produce a training set for our network, we 
acquired pairs of photographs of the same subject 
using the camera of a Google Nexus 6 smartphone 
at full resolution (i.e., 13 MP). We captured one pho-
tograph of the pair using only the flash of the smart-
phone, and the other using a studio-like set of lamps 
that provide uniform illumination. In postprocessing, 

FLASH PHOTOGRAPHY

F lash photography has been previously used to 
add details to photographs in low-light condi-

tions, which typically suffer from high noise. In two 
concurrent works, Petschnigg  et al.1 and Eisemann and 
Durand2 proposed transferring the ambient lighting 
from flash photographs with low ISO, which implies 
low noise, into nonflash photographs of the same 
subjects or scene, with reduced noise. Other works3 
have developed this idea further by removing over- or 
under-illumination at a given flash intensity, reflections, 
highlights, and attenuation over depth. Removing or 
reducing unwanted reflections in pictures can also be 
obtained by the approach proposed by Zhang  et al.,4 an 
end-to-end learning technique for single-image reflec-
tion separation with perceptual losses and a custom-
ized exclusion loss.

Eilertsen  et al.5 proposed an approach to obtain 
high dynamic range (HDR) images from low dynamic 
range images based on the U-Net architecture (https: 
//en.wikipedia.org/wiki/U-Net) originally developed as 
a CNN for biomedical image segmentation. Similarly, 

Chen  et al.6 showed that U-Nets can be used success-
fully to de-Bayer images captured at low-light condi-
tions and high ISO, which typically exhibit considerable 
noise. They extensively studied different approaches 
to processing such real-world noisy low-light images. 
For example, they tested a variety of architectures, 
loss functions [e.g., L1 (least absolute deviations), L2 
(least square errors), and the structural similarity index 
(SSIM)], and different color inputs.

Aksoy  et al.7 presented a large-scale collection of 
pairs of images with ambient light and flash light of the 
same scene. These images were obtained by casual pho-
tographers using their smartphone cameras, and con-
sequently, the dataset covers a wide variety of scenes. 
The dataset was provided for future work on high-level 
tasks such as semantic segmentation or depth estima-
tion. Unlike their dataset, whose objective is to provide 
matching between two images under uncontrolled 
lighting conditions, our dataset aims to change the 
lighting scheme by converting images from flash light-
ing to a controlled photograph studio light one.
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we aligned each pair using the MATLAB Image Pro-
cessing Toolbox™ to minimize misalignments. These 
are caused by a delay of about 400 ms between the 
two shots due to switching on and off the studio 
lamps. We set the nonflash image as the misaligned 
one and the flash image as our reference, and then 
ran a tool for affine alignment, i.e., translation, rota-
tion, scale, and shear. Since photographs in each 
pair have different lighting conditions, we had to use 
a multimodal optimizer to align two images using 
intensity-based registration. In a few cases, mis-
alignments persist when one image has the subject 
with open eyes and the other with closed eyes or vice 
versa. In such cases, the worst images were removed 
from the dataset.

After the alignment step, we identified the subject 
face by running a simple face recognition API (https: 
//github.com/ageitgey/face_recognition). This outputs 
a bounding box for a photograph that we used to crop 
each image, which is finally downsampled to 512 × 512. 
During our acquisition process, we managed to collect 
495 pairs of photographs. These pairs represent 101 
people (both females and males) in different poses. In 
order to have a larger dataset, we augmented this set 
using three common techniques:

 › five rotations from −20° to +20° around the center 
of the face bounding box, using a 10° step;

 › cropping the image to the face bounding box 
and rescaling to original image size;

 › flipping images horizontally.

These operations increased the original dataset by 
a factor of 20, obtaining a training set of 9.900 images 
at a 3120 × 4160 resolution (13 MP).

RESULTS AND DISCUSSION
We trained our CNN on pairs of 512 × 512 images for 
about five days on an NVIDIA Titan Xp GPU, perform-
ing 62 epochs and about 458 000 backpropagation 
iterations. We interrupted the training when the value 
of the loss function computed on 1500 images reached 
a low level of approximately 0.0042.

We calculated the accuracy of the result as

40mcg01-capece-2958274.3d (Style 5) 03-01-2020 16:1

of pixels, BLðxi; ss; srÞ is the CNN input, xi is the
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where I ¼ td; ~I ¼ yd; wðIÞ ¼ widthðIÞ, and hðIÞ ¼
heightðIÞ. After the training step, we obtained an

accuracy value of 96.2%. In the test phase, we

evaluated our approach using 740 test images,

obtaining a loss-test value of 0.0045 and an accu-

racy value of 96.5%. The evaluation was done on

the dataset provided by Aksoy et al.,7 on images

such as those shown in Figures 1, 3, and 4.
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where I = td, I� = yd, w(I) = width(I), and h(I) = height(I). 
After the training step, we obtained an accuracy value 
of 96.2%. In the test phase, we evaluated our approach 
using 740 test images, obtaining a loss-test value of 
0.0045 and an accuracy value of 96.5%. The evaluation 
was done on the dataset provided by Aksoy  et al.,7 on 
images such as those shown in Figures 1, 3, and 4.

Comparison With Reconstructed 
Ground Truth Images
One key idea of our technique is to train the CNN to 
learn the difference between the bilateral filtered tar-
get and input images. The output of the pipeline then 
subtracts the CNN prediction from the original input 
image. This allows us to preserve the high-frequency 

FIGURE 3. Results of our approach on real selfie images of the 

dataset provided by Aksoy  et al.7 Such a dataset, as well as 

the training dataset, consists of images taken to approximate 

real selfie images using a smartphone and smartphone flash 

at a similar distance and angle of a real selfie. The first col-

umn represents the input of our neural network, the middle 

column represents our result, and the last column represents 

the no-flash ambient image.
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detail, even though the exact ground truth cannot be 
reconstructed exactly, even with a zero-loss function.

But of greater concern are the misalignments due 
to pose changes between the flash and nonflash pho-
tos, which would otherwise dominate when comput-
ing the input and output image differences. For these 
reasons, we introduce a preconditioning operator on 
the ground truth:
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One key idea of our technique is to train

the CNN to learn the difference between the

bilateral filtered target and input images. The

output of the pipeline then subtracts the

CNN prediction from the original input image.

This allows us to preserve the high-frequency

detail, even though the exact ground truth

cannot be reconstructed exactly, even with a

zero-loss function.

But of greater concern are the misalign-

ments due to pose changes between the flash

and nonflash photos, which would otherwise

dominate when computing the input and out-

put image differences. For these reasons, we

introduce a preconditioning operator on the

ground truth:

oi ¼ xi � 2ti þ 1 (4)

where ti is the target difference. This operator

represents the reconstructed ground truth in

which some of the high frequencies lost through

the bilateral filter and not recoverable were not

considered.

We show an excerpt of the validation data in

Figure 5. Note how hair, beard, and skin color

are lost in the flash photo and restored in our

results. Also, shadows and highlights due to the

flash are mitigated.

We evaluated the data by employing the

SSIM; see Figure 6 for comparisons between

the ground truth images and reconstructed

predictions.

Figure 3. Results of our approach on real selfie

images of the dataset provided by Aksoy et al.7 Such

a dataset, as well as the training dataset, consists of

images taken to approximate real selfie images using

a smartphone and smartphone flash at a similar

distance and angle of a real selfie. The first column

represents the input of our neural network, the middle

column represents our result, and the last column

represents the no-flash ambient image.

Figure 4. Our approach can be used on people

with different features and ethnicities. Although the

flash highlights remain evident in the lenses of

people with glasses, they do not affect our approach

to the rest of the image.
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where ti is the target difference. This operator rep-
resents the reconstructed ground truth in which some 
of the high frequencies lost through the bilateral filter 
and not recoverable were not considered.

We show an excerpt of the validation data in 
Figure 5. Note how hair, beard, and skin color are lost 
in the flash photo and restored in our results. Also, 

shadows and highlights due to the flash are mitigated.
We evaluated the data by employing the SSIM; see 

Figure 6 for comparisons between the ground truth 
images and reconstructed predictions.

Comparisons
We compared our results against three other 
approaches in the literature (see Figure 6). The first 
approach is HDRNet by Gharbi  et al.11 and is based 
on the use of a CNN combined with bilateral grid pro-
cessing and local affine color transforms. HDRNet is 
designed to learn the effect of any image operator 
and, hence, is a suitable candidate to remove flash 
artifacts from photographs. The second approach is 
Pix2Pix by Isola  et al.,12 which is based on a “condi-
tional” Generative Adversarial Network (cGAN) for 
which image generation is conditional on the type of 
image. This type of neural network was investigated as 
a general-purpose solution to image-to-image trans-
lation problems. Isola  et al. tested their cGAN on dif-
ferent tasks such as photo generation and semantic 
segmentation. The third approach is the style transfer 
method proposed by Shih  et al.13 in which a multiscale 
local transfer approach is applied to portraits.

We feel our technique compares favorably with 
these other methods in that it makes the lighting uni-
form removing the flash highlights without introducing 
problems such as altering geometries and blur effect.

CONCLUSION
In photography, glare is a common issue that causes 
shiny highlights, especially in portraits. In the majority 
of cases, glare is a defect, and the subjects seem to be 
greasy. Glare can be removed from the face manually 
with a complicated and uncertain result process that 
requires photo-editing skills.

This article proposes a technique that is able to 
dramatically increase the quality of smartphone flash 
selfies by turning them into portraits with studio-like 
lighting. The approach is able to automatically remove 
flash lighting artifacts such as hard shadows and 
highlights by using a regression model based on 
supervised learning.

These results confirm the capabilities that 
learning-powered computational photography is able 
to reach in lighting control and suggest promising new 
developments in other contexts such as relighting for 

FIGURE 4. Our approach can be used on people with different 

features and ethnicities. Although the flash highlights remain 

evident in the lenses of people with glasses, they do not 

affect our approach to the rest of the image.
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better presentation of objects or for advanced shading 
removal in photogrammetric reconstructions. 
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In this work, we investigate several machine learning methods to tackle the problem of 
intent classification for dialogue utterances. We start with bag-of-words in combination 
with Naïve Bayes. After that, we employ continuous bag-of-words coupled with support 
vector machines (SVM). Then, we follow long short-term memory (LSTM) networks, which 
are made bidirectional. The best performing model is hierarchical, such that it can take 
advantage of the natural taxonomy within classes. The main experiments are a comparison 
between these methods on an open sourced academic dataset. In the first experiment, we 
consider the full dataset. We also consider the given subsets of data separately, in order 
to compare our results with state-of-the-art vendor solutions. In general we find that the 
SVM models outperform the LSTM models. The former models achieve the highest macro-F1 
for the full dataset, and in most of the individual datasets. We also found out that the 
incorporation of the hierarchical structure in the intents improves the performance.

Customer interaction is at the center of many 
organizations. In order to help customers 
efficiently, one could automate the interac-

tion between the organization's representative and 
a customer. Customers usually contact the organiza-
tion with a specific request or query. In order to help 
a customer, the intention of the customer needs to be 
classified.8 Intent classification tries to answer the 
question why the customer contacted the organiza-
tion and what the customer wants to achieve. The 
interaction can partly or fully be automated using a 
dialogue system,27 which uses intent classification. 
The classification can also be used to help the human 
representatives, namely, by using intent classification 
to direct the incoming messages to the representative 
that has the right expertise. Due to its importance for 
dialogue handling,25 intent classification needs to be 
done properly. Therefore, this research focuses on 

improving the existing practice of intent classification 
for dialogue utterances.

In order to classify intents of customers, a dialogue 
system needs to analyze the incoming messages. The 
messages are called utterances, or acts-of-speech. In 
our case they are typed messages in English, roughly 
the length of a sentence. The classification of the intent 
is made per utterance. We analyze the case where pos-
sible intents are disjoint. In other words, each incoming 
message belongs to only one class. However, some 
intents might be very similar and belong to a common 
category, or in other words to a group of intents. We 
explore the possibility of extending the classifier with 
knowledge about the inherent hierarchy of intents.

RELATED WORK AND  
SCIENTIFIC RELEVANCE

Previous studies have proposed several classification 
algorithms for short texts, starting with parsimonious 
text classifiers, such as bag-of-word (BoW) with Naïve 
Bayes (NB) and continuous bag-of-word (CBoW) with 
support vector machines (SVM).24 The performance of 
NB is limited by the vocabulary in the training set. SVM 
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can circumvent this by using word embeddings, trained 
on an external corpus. However, with both approaches, 
word order is lost. To account for complex dependen-
cies between words in the representation of an utter-
ance recurrent neural networks (RNNs) were intro-
duced.6 Most recently, LSTMs and their simplification 
gated recurrent unit (GRU) have been used for intent 
classification17 and emotion detection,16 respectively, 
in dialogues. Attentive LSTMs10 are less useful here as 
the classified text is rather short in nature.

Flat classifiers need to distinguish between all 
classes at once. When there is a large number of 
classes, this can become difficult. Instead, hierarchi-
cal classification can be used. A hierarchical classifier 
tries to incorporate the hierarchical structure of the 
class taxonomy. Hierarchical classification was first 
used for text classification by Koller and Sahami.15 
They used a local classifier per parent node for train-
ing, at each node selecting a subset of features 
relevant for that step in the classification process. A 
similar hierarchical structure with an SVM at every 
node was used for speech-act classification.13 Ono  et 
al. used a form of local classifier per level, where they 
tried the lowest level (leaf nodes) first.19 If the uncer-
tainty is too high, they move up in the hierarchical 
level. Hierarchical classifiers have been used for intent 
classification in Web12 and platform11 searches. For 
chatbots, multi-intent classification was researched 
by Rychalska  et al.21

We contribute to the existing literature in two 
ways. First, we apply hierarchical intent classification 
on dialogue utterances (in multiclass classification 
as apposed to multilabel). Second, we present perfor-
mances of machine learning classifiers, alongside the 
black box models used by Braun  et al.2

METHODOLOGY
In this section, we discuss the methods used to clas-
sify intents. Each method is a combination of an utter-
ance representation and a classification algorithm. 
We start with a formalization of the problem. Then fol-
low the flat classifiers. Finally, we discuss the hierar-
chical classifier.

Intent Classification
The classification of an intent is answering the ques-
tion: What is the customer trying to accomplish? In 

intent classification, the utterance d  X of a dialogue 
is given, where X is the utterance space; a fixed set 
of predefined intents C = {c1,..., cJ} and a training set D 
of labeled dialogue utterances {di, ci} i=1

N where (d,c) 
 X × C. We consider the one-off problem or in other 

words single label classification, where each d corre-
sponds to one element of C. For example,

(d,c) = (“What software can I use to view epub 
documents?”, “Software Recommendation”).

Flat Classifiers
BOW-NB: The first model we discuss is the BoW repre-
sentation with multinomial NB. This model is the base-
line in our experiments. Each utterance is represented 
by the set of word counts that occur in the utterance. 
Therefore, word order is neglected. The way we imple-
ment NB is as follows. First, we start by removing the 
stop words. Second, we use lemmatization. Although 
the combination of unigram and bi-gram is advised,24 
we do not have enough bi-gram counts. Therefore, 
we only use uni-grams. We handle zero counts with 
Laplace smoothing.

An advantage of NB is its efficiency during training 
time, as it only needs to pass through the data once. 
However, the downside of NB is the conditional inde-
pendence assumption, stating that terms and the sig-
nal they carry are independent of each other given in 
the class. Furthermore, the model uses the positional 
independence assumption, stating the position of a 
word does not matter. Most importantly NB cannot 
handle unseen words.

CBOW-SVM: Second, we discuss CBoW as an input 
for SVM. CBoW uses continuous word representa-
tions called word embeddings. This gives the SVM 
classifier the advantage to pick up signals from simi-
lar in meaning, yet unseen, words. We use three word 
embeddings: Word2Vec,18 GloVe,20 and FastText.1

The CBoW representation is comparable to the 
conventional BoWs representation, since both lose 
the information of the order of terms. However, using 
word embeddings gives CBoW an advantage over tra-
ditional BoWs. Namely, CBoW can pick up signals from 
previously unseen words. CBoW gives us the addi-
tional advantage that the input for the classification 
algorithm is a fixed dimensional vector, independent 
of the length of the utterance or vocabulary. This is 
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a desirable feature for SVMs. There are two forms of 
CBoW we consider. One takes the sum of the embed-
ding vectors of the respective terms, whereas the 
other takes the average
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where each feature ti corresponds to a word and

has an associated vector vðtiÞ.
The intuition behind CBoW is as follows. The

summation of word vectors creates a path in the

word embedding space. The resulting vector

(from the origin to the end of the path) should

capture a mathematical representation of the

overall meaning of the utterance. Adding more

words with the same meaning might spread the

cluster of the representations of a given intent,

possibly making the classification harder. When

the average is taken, the overall length of this

path is normalized with respect to the number

of words in the utterance.

SVMs are a classification method that uses a

kernel function to find decision boundary between

two classes that has a maximummargin in a latent

space. We consider both the Linear and Radial

Basis Function kernels. Since we allow for mis-

classifications in the training set, a cost parameter

C is added to give a penalty to these violations.

In order to determinewhich kernel and hyperpara-

meters to use, we use twofold cross validation

with stratified sampling.

Inherently, SVMs are binary classifiers. Sev-

eral attempts have been made to create a multi-

class SVM scheme.9 We use the one-against-one14

scheme, as it performed as one of the best in the

comparison of Hsu and Lin.9 During testing we

use Max Wins voting,4 where the class with the

highest number of votes is chosen as final predic-

tion. Since we are dealing with unbalanced class

distributions, we use class weights in the SVM.

LSTM: The key feature of RNNs is that they can

process sequential data, giving them the possibil-

ity to model word dependencies. Parameter shar-

ing enables the recurrent network to pick up

signals from longer sequences than dense neural

networks, and to take inputs of arbitrary length

and learn general patterns across them. There

are several types of RNN architectures,22 we con-

sider the tail model. The tail model constructs a

hidden state by passing the complete sequence

and using the last hidden state as input for the

classification layer. Alternatives such as the pool-

ing or hybrid pooling do not consistently outper-

form themore parsimonious tail model.22

Gated RNNs are themost compelling sequence

models used in practice. These include networks

based on the LSTM7 and GRU.3 Gated RNNs are

based on the idea of creating paths through time

that have derivatives that neither vanish nor

explode. This is done by learning connection

weights, and the ability to forget the old state,

from the data. We choose to use LSTMs over

GRUs due to the extra flexibility offered by the

controls for the update and output of the state.

Bidirectional LSTM (BiLSTM) was created to

model dependencies on the next time step in the

sequence.5 They are a combination of a recur-

rent module that passes the sequence forward

through a memory block and a recurrent module

that passes the sequence backwards through

a different memory block. The tail model uses
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where each feature ti corresponds to a word and has 
an associated vector v(ti).

The intuition behind CBoW is as follows. The sum-
mation of word vectors creates a path in the word 
embedding space. The resulting vector (from the 
origin to the end of the path) should capture a math-
ematical representation of the overall meaning of the 
utterance. Adding more words with the same mean-
ing might spread the cluster of the representations 
of a given intent, possibly making the classification 
harder. When the average is taken, the overall length 
of this path is normalized with respect to the number 
of words in the utterance.

SVMs are a classification method that uses a ker-
nel function to find decision boundary between two 
classes that has a maximum margin in a latent space. 
We consider both the Linear and Radial Basis Function 
kernels. Since we allow for misclassifications in the 
training set, a cost parameter C is added to give a pen-
alty to these violations. In order to determine which 
kernel and hyperparameters to use, we use twofold 
cross validation with stratified sampling.

Inherently, SVMs are binary classifiers. Several 
attempts have been made to create a multiclass SVM 
scheme.9 We use the one-against-one14 scheme, as 
it performed as one of the best in the comparison of 
Hsu and Lin.9 During testing we use Max Wins voting,4 
where the class with the highest number of votes is 
chosen as final prediction. Since we are dealing with 
unbalanced class distributions, we use class weights 
in the SVM.

LSTM: The key feature of RNNs is that they can 
process sequential data, giving them the possibility to 
model word dependencies. Parameter sharing enables 
the recurrent network to pick up signals from longer 
sequences than dense neural networks, and to take 
inputs of arbitrary length and learn general patterns 

across them. There are several types of RNN archi-
tectures,22 we consider the tail model. The tail model 
constructs a hidden state by passing the complete 
sequence and using the last hidden state as input for 
the classification layer. Alternatives such as the pool-
ing or hybrid pooling do not consistently outperform 
the more parsimonious tail model.22

Gated RNNs are the most compelling sequence 
models used in practice. These include networks 
based on the LSTM7 and GRU.3 Gated RNNs are based 
on the idea of creating paths through time that have 
derivatives that neither vanish nor explode. This is 
done by learning connection weights, and the ability to 
forget the old state, from the data. We choose to use 
LSTMs over GRUs due to the extra flexibility offered by 
the controls for the update and output of the state.

Bidirectional LSTM (BiLSTM) was created to model 
dependencies on the next time step in the sequence.5 
They are a combination of a recurrent module that 
passes the sequence forward through a memory block 
and a recurrent module that passes the sequence 
backwards through a different memory block. The tail 
model uses a concatenation of the final two hidden 
states as input for the last layer.

Following similar work, the network is trained using 
the Adam optimizer.17 We calculate updates from the 
gradients based on batches of training utterances. We 
use backpropagation through time26 to update recur-
rent components. Gradient clipping is used in order 
to deal with exploding gradients and we found that 
capping the gradients at five works well. We use the 
following regularizers: early stopping, ensembles, and 
weight noise. A popular way of creating weight noise is 
by applying dropout. We use dropout only at the non-
recurrent connections.28 The hyperparameters of the 
LSTM model are the size of the input dimension, and 
the size of the state variable. Both are determined by 
twofold cross validation using stratified sampling.

Hierarchical Classifiers
Hierarchical classification can be considered as a 
classification that takes the hierarchical structure 
of the taxonomy of classes into account, as opposed 
to a flat classifier, which only takes the final classes 
into account. By imposing the hierarchical struc-
ture, the model does not need to learn the separation 
between a large number of classes. It can now focus 
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on classifying subclasses within a category. The tax-
onomy can be formalized as a tree or a directed acycli-
cal graph,23 we consider the case where the taxonomy 
is a tree due to the nature of our data.

Our goal is to reduce the number of classes consid-
ered based on the natural taxonomy, therefore we use 
a local classifier per parent node. This local hierarchi-
cal classifier has a flat classifier at every parent node, 
which means that the number of classifiers that need 
to be constructed scales directly with the number of 
parent nodes. During training of a classifier at any given 
parent node, only the observations belonging to its 
children are considered. After training each individual 
classifier, the local classifier can be used for inference. 
During testing, the classification starts at the root 
node. The outcome of the root node determines which 
next classifier should be considered. The outcome of 
this classifier selects the next classifier to be used. 
This is repeated until a leaf node is predicted, this then 
becomes the final prediction of the local classifier.

Performance Measure
We measure the performance with the macro-F1 score. 
The F1 score is a harmonic mean of the precision and 
recall for each intent. We value both and do not want a 
linear tradeoff between them. We are interested in the 
performance on all classes equally, independent of the 
number of test observations. Therefore, we aggregate 
the measures by means of the macro average.

DATASET AND EXPERIMENTS
We use the dataset curated by Braun  et al.,2 available 

at https://github.com/sebischair. It consists of two 
corpora, distinguished by the way they were gathered. 
There is the Chatbot Corpus on Travel Scheduling, and 
the StackExchange Corpus on Ask Ubuntu and Web 
Applications. In this section, we discuss the experi-
mental setups on this dataset.

Complete Dataset: We start with the complete 
set that includes all three subsets. This gives us the 
opportunity to select the best overall model, based 
on the macro-F1 score. The concatenation of the 
three subsets imposes a hierarchy in the taxonomy 
of intents. This allows us to compare hierarchical 
classifiers with flat classifiers. The class hierarchy is 
depicted in Figure 1.

Individual Datasets: In this experiment, we con-
sider the subsets of the data separately. This gives 
us the possibility to compare our methods with the 
classifiers used by Braun  et al.2 They use the Natural 
Language Understanding solutions of LUIS, Watson 
Conversation, API.ai, and RASA.

RESULTS
Complete Dataset: The results of the different classi-
fiers on the complete dataset are reported in Table 1. 
The best performing flat classifier is the SVM model, 
this is independent of the type of word embedding or 
the method used to aggregate the word embeddings. 
We select this classifier as candidate for the hierar-
chical classifier. When adding hierarchy to the mod-
els, we find varying results. The baseline model clearly 
improves when taking the taxonomy of classes into 
account, while adding the local hierarchy to the SVMs 

FIGURE 1. Hierarchy of the classes with a local hierarchical classifier per parent node.
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comes with mixed results. For the FastText embed-
dings it is a clear improvement, whereas for the GloVe 
embeddings it is not. Overall, the best hierarchical 
SVM outperforms the best flat SVM.

With regard to the utterance representation, we 
find that averaging is better than summing the word 
embeddings, as SVM with CBoWave performs better in 
the flat classification and the best hierarchical classi-
fier uses also averages. Furthermore, we note that the 
bidirectional component in the BiLSTMs does not cap-
ture more information, as the LSTM performs better 
than the BiLSTM. Together with the fact that the SVM 
outperforms the LSTM, this indicates that taking the 
word order into account is not relevant in this dataset. 
This is likely due to the short utterance length.

Individual Datasets: The macro-F1 for the indi-
vidual datasets are in Table 2. We note that it is hard to 
interpret the comparison with Braun  et al.,2 as most of 
the methods used are black boxes.

In the Travel Scheduling dataset, the (Bi)LSTM 
with Word2Vec embeddings performs the best. The 
SVM with Word2Vec and CBoWave and BiLSTM per-
form equally well as the intent classifiers of LUIS and 
RASA. We note that the relatively high performance of 
our baseline, NB, indicates that this is a relatively easy 
set to classify.

The Ask Ubuntu set provides a slightly harder 
classification task. In this set, the intent classifier of 
Watson outperforms the other vendor solutions as 
well as all our models. From our models, the SVM with 
FastText with CBoWave is the best performing model. 
We note that all RNNs are performing worse than the 
NB baseline.

The final subset is on Web Applications. The Web 
Applications data proves to be more difficult, this 
is likely due to the fact that it has very few training 
observations (an average of less than four training 
observations per intent). Here, we see that our best 
performing model is the SVM with FastText and 
CBoWave. Together with the Word2Vec CBoWave and 
the GloVe CBoWsum it outperforms the vendor solu-
tions. Furthermore, we note that the BiLSTM is the 
best performing recurrent network, just as in the 
Travel Scheduling and Ask Ubuntu sets. One can note 
that, on the complete dataset the LSTM performed 
better than BiLSTM, as the LSTM has an edge in dif-
ferentiating between the three types of datasets.

CONCLUSION
In general, we find that the SVM models outperform 
the LSTM models. They achieve the highest macro-F1 
for the full dataset, they are also able to handle the 
scenario of the individual datasets. With regard to 
taking advantage of the hierarchical structure in the 

Model Flat Hierarchical Model Flat

NB . 541 . 614

SVM FastText
average

. 689 .782 LSTM
FastText

. 605

SVM FastText
sum

. 657 . 642
BiLSTM
FastText

. 569

SVM GloVe
average

.752 . 654 LSTM GloVe . 586

SVM GloVe sum . 680 . 658
BiLSTM
GloVe

. 575

SVM Word2Vec
average

. 705 . 703
LSTM

Word2Vec
. 543

SVM Word2Vec
sum

. 673 . 706
BiLSTM

Word2Vec
. 502

TABLE 1. Macro-F1 for the test set on the complete dataset.

Travel
Scheduling

Ask
Ubuntu

Web
Applications

.502.726. 959BN

SVM FastText
average

. 958 .812 .771

SVM FastText sum . 968 . 800 . 658

SVM GloVe average . 946 . 805 . 591

SVM GloVe sum . 957 . 729 . 692

SVM Word2Vec
average

. 979 . 742 . 698

SVM Word2Vec
sum

. 946 . 742 . 680

LSTM FastText . 968 . 644 . 465

BiLSTM FastText . 979 . 646 . 549

LSTM GloVe . 945 . 665 . 546

BiLSTM GloVe . 979 . 667 . 635

LSTM Word2Vec . 989 . 631 . 395

BiLSTM Word2Vec . 989 . 710 . 443

LUIS .979 . 743 .690

Watson . 968 .819 . 630

.628.782139.ia.IPA

RASA .979 . 708 . 494

TABLE 2. Macro-F1 score for the individual subsets.
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intents, we find that the SVM with averaged FastText 
embeddings significantly benefits from the hierarchy 
and outperforms all other models. Using word embed-
dings as utterance representation yields a better per-
formance than using a count-based method, however, 
taking word order into account does not. In general, 
we see better results when we take the element wise 
average of the word embeddings, as apposed to the 
sum, indicating that correcting for the length of the 
utterance is useful. Finally, we note that our models 
improve on the NB baseline. Furthermore, they are on 
par with or improve on the performance of the black 
box methods used by Braun  et al.2

Future Research
There are different opportunities for future work, we 
discuss a few below. We start with several options with 
respect to the hierarchy, followed by data augmenta-
tion and transfer learning.

The type of hierarchical model considered is a local 
hierarchical classifier per parent node. Alternatively, a 
global hierarchical classifier could be constructed by 
modifying a flat classifier to take the taxonomy into 
account at once. The intermediate certainties could 
be exploited by the dialogue system, with specific 
follow-up questions.

In order to deal with the limited number of training 
observations, future work could look into data aug-
mentation or transfer learning. Data augmentation 
could be used by interchanging one or multiple ran-
dom words with their synonyms. Alternatively, trans-
fer learning can be used. One could take a subset of 
intents, starting with two intents, training the clas-
sifier and using the inferred weights as initialization 
when learning to classify with an additional intent 
added to the problem. 
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White Learning:  
A White-Box Data Fusion Machine 
Learning Framework for Extreme and Fast 
Automated Cancer Diagnosis
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In machine learning, deep learning operates as a 
black-box, where the representation of prior knowl-
edge is difficult to understand by human users and 

learning systems designers, although they provide high 
prediction accuracy. On the other hand, traditional 
learning techniques such as Bayesian networks usu-
ally learn from separate datasets with the ease of rep-
resenting prior knowledge and causality information, 
which makes them remarkably good white-box infer-
ence making technology but with a moderate level of 
prediction accuracy. In this article, we are presenting 
a framework that combines the two worlds. It uses a 
fusing black-box learning that carries the advantage of 
high level of accuracy with the white-box representa-
tion capabilities of the traditional techniques with the 
prior knowledge, and causality information are readily 
available as a direct acyclic graph. We can call this 
combination White Learning. We define white learning 
as the systemic fusion of machine learning models 
based on an interpretable Bayes network that explains 
the relations among the attributes and class, as well 
as a deep learning that has the superior classification 
success rate. A case of loosely coupled white learning 
model, which uses an incremental version of Naïve 
Bayes network and deep learning, is tested on breast 

cancer diagnosis. Our experimental results show that 
it is possible to create a loosely coupled white-learning 
model that can do both accurate prediction and data 
relation reasoning.

Despite the recent momentum of AI-enabled 
cancer detection that has attracted lots of research 
output from academia, commercial bodies such as 
Google, for example, have developed a deep learning 
tool in October 2018 that is able to detect metastasized 
breast cancer with 99% accuracy. One key component 
of the cancer diagnostic information system is the 
core machine learning algorithm. According to Google: 
“While Google LYNA (LYmph Node Assistant) achieved 
significantly higher cancer detection rates than had 
been previously reported, an accurate algorithm alone 
is insufficient to improve pathologists’ workflow or 
improve outcomes for breast cancer patients. For 
patient safety, these algorithms must be tested in 
a variety of settings to understand their strengths 
and weaknesses. Furthermore, the actual benefits 
to pathologists using these algorithms had not been 
previously explored and must be assessed to deter-
mine whether or not an algorithm actually improves 
efficiency or diagnostic accuracy.” That implies a deep 
learning algorithm, although fast may not be the only 
criteria in learning. There are more qualities that need 
to be explored before deep learning or machine learn-
ing technology in general can put into live applications 
that concern the life and death of patients.
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The deep learning model is often 
uninterpretable. Most people are 
using it without knowing the internal 
working mechanism on how and why 
the results were generated.

White Learning 
Framework
A framework of white learning 
is proposed in this article, which 
embraces three categories of white 
learning models where various lev-
els of hybridization of Bayesian net-
works and neural networks are 
fused. At the algorithm level, Bayes-
ian networks and neural comput-
ing are integrated tightly as a whole 
or partial redesigned entity of computing logics. Ele-
ments of Bayesian networks and neural computing 
co-exist in the design of program codes. This level of 
integration often requires a high extent of intellec-
tual innovation, especially if the new hybrid after cou-
pling the white-and-black box learning models would 
outperform either one of the original two models. On 
the other hand, loosely coupled models are those 
which run almost independently of each other; exem-
plars are those ensembles from which the results of 
the best performing model out of many are taken as 
the final results. These models are often taken as they 
are, without any modification in their codes. Their exe-
cutions are totally self-contained. In some cases, the 
training/testing data may be modified throughout the 
process, improving its quality as output from one of 
the two models to the input of the other. A compromise 
between tightly and loosely coupled models is called 
a semicoupled model in our framework. This group of 
fusion model has the following features—the designs 
of the Bayesian network (BN) and neural network 
models that remain basically unchanged. However, 
the parameters, input variables, configurations, and/
or execution controls of either one of the two models 
are influenced by the other model. During the machine 
learning operation, in addition to improved data, 
there is information passing between the two models 
with an objective of enhancing the performance of a 
model by receiving support from the other model. Fig-
ure 1 shows a framework in which three categories of 

hybridization are observed from the literature for com-
bining white-and-black box learning together.

One of the most important tightly coupled white 
learning models is the Bayesian artificial neural net-
work. This Bayesian neural network naturally can 
solve the model overfitting problem. Out of an entire 
distribution and possible neural network of differ-
ent sizes, Monte Carlo simulation is often used in 
the model selection. This classical concept of using 
Bayesian probability distribution to grow a neural 
network dates back to the 1990s1 and developed in the 
paper by Freitas2 with application cases of financial 
stock prediction and recently applied for predicting 
and explaining cases of Alzheimer's disease.3 Lately, 
researchers from Intel AI lab extended this principle 
for deep learning. Rohekar  et al.4 proposed a hierar-
chical network structure where the conditional inde-
pendences between the depth and internetwork-layer 
connectivity can be controlled. The network structure, 
hence, can grow according to the BN structure learn-
ing. To this end, instead of learning for the classifica-
tion power, it learns for obtaining a generative graph 
and then into a class-conditional discriminative graph 
in which the conditional-dependence relations among 
the variables are preserved. Automatically, the opti-
mal network depth is, hence, determined, resulting in 
a compact deep learning model that has a good level 
of accuracy in image classification. Chaturvedi  et al.5 
proposed a Bayesian deep CNN, which uses Gaussian 
networks for learning features in a CNN.

FIGURE 1. Framework of loosely-semi-and-tightly coupled models for white learning.
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A semicoupled white learning model in our white 
learning framework is characterized by building two or 
more machine learning models in the form of Bayes-
ian or similar white box decision tree model, and deep 
learning or neural network and the like, by transfer 
learning. Information or prior knowledge learnt from 
one model is passed onto the other model in such a way 
that the learned outcomes could benefit the construc-
tion of another model. In a semicoupled white learning 
model, either control, knowledge, or messages, which 
are related to shaping up the machine learning model, 
are passed from one model to another. The Ph.D. 
thesis by Krakovna6 is focused on designing a new 
semicoupled white learning system, which combines 
recurrent neural networks and the hidden Markov 
model (HMM). In particular, Viktoriya attempts to train 
an HMM based on a long-short-term-memory neural 
network (LSTM). The HMM is first trained, followed 
by another training given by the state distributions 
from a small LSTM for making up the shortcoming of 
HMM's performance. The work shows that HMM and 
LSTM can learn complementary information about 
the feature; hence, feature selection is cooperatively 
applied together. Choi  et al.7 have built a Hybrid BN 
for predicting breast cancer prognosis, which has a 
certain level of accuracy by neural network and inter-
pretation by the BN. First, the neural network and BN 
are independently built. The confidence value of the 
neural network output node is sent to the BN model 
as an additional input node. Therefore, the confidence 
value of the neural network output node is used as an 
additional input node in the hybrid BN model. A hybrid 
BN model, which uses the confidence value of the neu-
ral network output node, is used to predict the survival 
rate of a breast cancer patient. On a similar note, Antal  
et al.8 infuse prior knowledge into the neural network 
from BN. It is done by encoding the prior knowledge in 
the format of a BN, which is called a belief network in 
his proposed methodology. Then, the prior knowledge 
is used to estimate information prior for the neural 
network. Two transformation methods are proposed: 
The first technique generates data samples according 
to the most probable parameterization of the Bayes-
ian belief network, then combining the generated data 
and the original training data in the Bayesian learning 
of an NN. The second technique transforms probabil-
ity distributions over belief network parameters into 

the statistical distributions over NN parameters. At 
the data level, where white box BN and black box NN 
are established and function independently, the only 
connection is of the passing data. This is called loosely 
coupled white learning in our framework. Pang  et al.9 
proposed an ensemble, which consists of four popular 
individual classifiers which are trained individually 
using backpropagation NN, evolutionary NN, SVM, 
and decision tree. Then, the learning results from each 
classifier are combined and put in a combined BN. In 
other words, the predicted class variable is put at the 
last column, then the outputs of each classifier are put 
as the values of features, for forming up a new training 
dataset. The dataset then is used to train a combined 
BN. In this process, all the classifiers are unchanged; 
they are constructed and operate independently 
of each other. Similar work by Garg10 was done by 
treating several BN independently and putting them 
together as an ensemble. The output of the BN that 
produces the highest level of accuracy is chosen as 
the final prediction. On one extreme, only the training 
dataset is shared, and no model is modified; Correa  et 
al.11 put several BN and NN together for execution. The 
model that offers the highest level of accuracy is taken 
as the predicted result.

EXPERIMENT
As a proof of concept for validating white-learning 
having an edge in accuracy performance and interop-
erability for cancer diagnosis, a novel white learn-
ing model is proposed with experimentation. The pro-
posed model is similar to misclassified recall (MR),12,13 
which was proposed earlier for enhancing the accu-
racy level for life-science disease prediction and IoT 
extreme automation data stream mining. In the con-
text of white learning, MR works by placing a BN cas-
cading by a CNN. So, at the end of training/testing, the 
model results in two classifiers. One is representing 
white box by BN, which explains the posterior probabil-
ities and causality about how a testing instance results 
in one of the hypotheses. The other one focuses on 
predicting the outcome with certainty, which is taken 
from the accuracy level of that particular prediction 
with a value capped between 0% and 100%. This is a 
typical case of white learning that is loosely coupled 
between BN and CNN deep learning, having the best of 
both white-and-black box learning. MR works by first 
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filtering the training dataset by an updatable BN that 
is believed to arrive at a high speed incrementally in an 
extreme automation scenario such as a cloud-based 
large-scale AI prediction online system. The algorithm 
which is used in the experimentation, as the prepro-
cessing filter and white-box learner called NaiveBayes-
Updateable, is available in R14 and Java.15 The quality 
of the training data would be improved because the 
misclassified instances would be eliminated, and the 
prior probabilities of those noisy data would not be 
included in the BN. Subsequently, the filtered training 
data would be passed onto the CNN for deep learning, 
in such a way that overfitting will be unlikely to occur 
because the noisy instances are removed in advance. 
As a result, the CNN structure shall be kept optimal, as 
is the prediction performance.

In the experiment, breast cancer data are simu-
lated with an increase of artificially instilled random 
noise, from 0% to 20% with an increment of 5% at each 
step. The data are anonymized and composed of 1000 
records of patient's cells information—six cells are 
selected from mammogram by a human expert, which 
are deemed to be most prominent as salient features 
describing the severity of the alleged disease. Each 
of the six cells is described by the aspects of radius, 
texture, perimeter, area, smoothness, compactness, 
concavity, concave points, symmetry, and fractal 
dimension of the cell. In total, there are 60 attributes. 
The white learning methodology in the case breast 
cancer detection is shown in Figure 2, where it has both 
explanatory part and predictive part of the machine 
learning model using BN and CNN, respectively.

Figures 3 and 4 show the comparison of white 
learning, NaiveBayesUpdatable, and deep learn-
ing for accuracy and model training/testing times, 
respectively.

In Figure 3, an interesting phenomenon is 
observed—the deep learning curve fluctuates greatly 
when the error level reaches 6% and beyond. That 
shows the CNN became very unstable, though the 
performance of CNN is known to be very sensitive 
to parameter settings. When the environment is 
noise-free, the performance for all the learning algo-
rithms is at around 90% accuracy. At a noise level 6%, 
the accuracy of deep learning dipped to about 38%, 
which is even worse than at the maximum noise level 
20% with accuracy of 41%. Among the three learn-
ing algorithms, deep learning is the worst, and white 
learning is the best. The differences of performance in 
magnitudes are best seen by the trend-lines, which are 
added to each of the curve of the learning algorithm. It 
can be observed that the gradients of the trend-lines 
for deep learning, NaiveBayesUpdatable, and white 
learning are –2.4843, –1.1614, and –1.2979, respectively. 
In general, the deeper the dive means the faster the 
accuracy will degenerate under noise. BN is most sus-
tainable under noise in terms of the rate of accuracy 
degradation. At the best case, where there is no noise, 
the accuracy rates for deep learning, NaiveBayesUp-
datable, and white learning are 96.1765%, 93.8235%, 
and 96.4706%, respectively. At the worst case of 
our simulation, the accuracy rates of the same are 
41.1765%, 70.8824%, and 72.3529%, respectively. White 
learning demonstrates its superiority as a hybrid in 

FIGURE 2. White learning model for breast cancer detection.
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comparison to the individual NB and DL. The train-
ing time for White learning is shorter than DL as well, 
implying its suitability for extreme automation.

CONCLUSIONS
Deep learning as a data modeling tool is hard to be 
understood of how its predicted result came about 

from its inner working. It is generally known as a black 
box and is not interpretable. Often in medical applica-
tions, physicians need to understand why a model pre-
dicts a result. On the other hand, BN is a probabilistic 
graph with nodes representing the variables, and the 
arcs present the conditional dependences between 
the variables. Prior knowledge and reasoning of how 

FIGURE 4. Comparison of white learning, NaiveBayesUpdatable, and deep learning in terms of model training/testing times.

FIGURE 3. Comparison of white learning, NaiveBayesUpdatable, and deep learning in terms of accuracy.
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a predicted outcome come about via examining the 
probability distribution associate with each node and 
the dependencies among them can be made possible. 
In this article, a white learning framework is proposed, 
which advocates three levels of fusing the black-box 
deep learning and white-box BN, that offers both pre-
dictive power and interpretability. A case of breast 
cancer classification is conducted in an experiment. 
From the results, it is observed that white learning, 
which combines black-box and white-box machine 
learning, has an edge in performance over individu-
ally BN alone or deep learning alone. The white learn-
ing framework has the benefits of interpretability and 
high predictive power, making it suitable for critical 
decision-making task where a reliable prediction is as 
important as knowing how the outcome is predicted. 
The predicted output, which is generated from white 
learning, can be traced back via the conditional prob-
ability at each node. It is, hence, anticipated that in 
the future, especially for medical domain, white learn-
ing, which has the benefits of both black-box and 
white-box learning, would be highly valued and raised 
in popularity. 
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Software development ignores human values. 
As a society, we rely on software systems 
that neither align with nor respect our core 

values, such as transparency, gender diversity, social 
justice, and personal integrity. The past 50 years of 
software engineering have focused on functionality, 
cost, safety, availability, and security. But what about 
broader human values (Figure 1) such as compassion, 
social responsibility, and justice? The way we design 
software fundamentally influences society, yet human 
values—which we would all claim to care about—have 
been a side concern in software engineering. (See 
“Where Are the Values in Software?”)

Surely it is high time that we fundamentally reimag-
ine the way we design software. Rather than focusing 
only on a narrow set of concerns, we should embed all 
human values into software design. If we don’t, we, as 
software engineers, will inadvertently create a society 
that nobody wants.

Admittedly, embedding human values into soft-
ware is difficult. Even where there is a willingness, and 
managerial support, to think about values, it proves 
challenging. Software development defaults back to 
values that are relatively easy to deal with—acces-
sibility, usability, and availability—for which there are 
more clearly defined guidelines or tools. Thus, running 
tools on a graphical user interface that check whether 
a color scheme is readable by the color-blind popula-
tion is common but does not help with addressing 
broader human values. There is a mismatch between 
what the software development community values—
typically automation, productivity, and quality—and 
broader societal values (Figure 2). There is also often 
an assumption that the latter naturally leads to the 

former, that we are improving people’s lives by auto-
mating things using quality software.

Why do values in software matter? The issue 
of values, and more narrowly ethics, in computing 
is receiving renewed attention because there are 
doomsday predictions of discriminatory artificially 
intelligent systems taking over the world. However, 
the real problems are much more mundane than are 
those of sentient machines. The interface for a simple 
human resources (HR) recruitment system is one 
example. Most job interviewers are encouraged, if 
not mandated, to consider periods of time away from 
work, e.g., parental leave. Yet HR recruitment systems 

do not prominently display such information; to dis-
cover it, interviewers must search through potentially 
hundreds of curriculum vitaes. If such a system was 
designed with the value of gender equality in mind, the 
interface would be designed very differently. We have 
known for decades that design is not values neutral, 
but software engineers have failed to understand this. 
We examined the last four years of papers published 
in the top software engineering conferences and 
journals; we found that only 16% of papers considered 
values at all. Of those, a significant majority focused 
on values of security and privacy.

But does the software industry care about non-
financial values? A naive view might argue that it 
does not, that it is all about the bottom line. However, 

This article originally  
appeared in 

 

vol. 36, no. 3, 2019

EDITOR: Tim Menzies, North Carolina State University, tim@menzies.us

DEPARTMENT: REDIRECTIONS

Is Your Software Valueless?
Jon Whittle

IF SUCH A SYSTEM WAS DESIGNED 
WITH THE VALUE OF GENDER 
EQUALITY IN MIND, THE INTERFACE 
WOULD BE DESIGNED VERY 
DIFFERENTLY.

Digital Object Identifier 10.1109/MS.2019.2897397 

Date of publication: 16 April 2019



52 ComputingEdge  January 2021

REDIRECTIONS

companies have at least claimed to care about val-
ues for a long time. Ever since Jim Collins’ and Jerry 
Porras’ book Built to Last,2 which found that a key 
determinant of a company’s success is a strong values 
statement, organizations have put a lot of effort into 
defining their corporate values. A study by Maitland3 
found that 86 of Financial Times Stock Exchange 100 
Index companies have public values statements, with 
values such as corporate integrity, respect, and hon-
esty topping the list. Clearly, companies implement 
these with various levels of seriousness, but many, if 
not all, do take them seriously and have managerial 
mechanisms to create a values culture. However, 
there is no way to trickle these values down into the 
software that we build.

At Monash University, Melbourne, Australia, we 
recently conducted two case studies with software 
companies to improve our understanding of their 

approaches to values. At least for these companies, 
values are explicitly talked about during software 
development: this usually takes the form of a values 
document used hiring decisions, training new staff, 
performance appraisals, and strategic decision mak-
ing. Sometimes there are more sophisticated ways to 
create an open culture, ones in which software devel-
opers can talk about and honestly question company 
values. These include forums for stepping back from 
day-to-day concerns, having someone designated as 
a critical friend, clarity in hiring practices, and train-
ing programs. However, even in those cases in which 
values are considered, the approach is limited to 
creating a values-driven culture as opposed to having 
it engrained into the act of software development. 
When companies consider values in developing soft-
ware, it is during business analysis and requirements 
engineering only; values are easily forgotten later.
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Therefore, the current state, at least for software 
companies that appreciate values, is a reliance on 
organizational culture. However, there is very little, 
if anything, to support technical work. This is not all 
bad news, however. Many existing software develop-
ment approaches can be adapted easily to work with 
values. Therefore, while a revolution in the mind-set of 
developers is necessary, more of an evolution could 
suffice from a process point of view. For example, 
agile development methods lend themselves naturally 
to thinking about values. In their current form, values 
will not immediately receive attention, but through a 
designated values guardian in a Scrum team, user sto-
ries could easily become values stories, and measure-
ment approximations, such as T-shirt sizing, would 
be useful for dealing with the inherent complexity of 
a nuanced concept such as values. Furthermore, we 
would go a long way by introducing well-established 
participatory design techniques into user-experience 
and user-centered design approaches. Participatory 
design methods are good at ensuring that end-user 
values are taken into account but have suffered from 
a lack of clarity and a refusal to simplify.5

More generally, there could be values versions 
of successful tricks that the software industry has 

used. Imagine a values manifesto with the beauty and 
simplicity of the agile manifesto, making it clear to 
developers that values are important. Or there could 
be a values maturity model that helps organizations 
to self-assess their values culture, such as level 0, 
ad-hoc consideration of values; level 1, a clear, pub-
lished corporate values statement but no real way to 
implement it; level 2, some processes to deal with val-
ues; level 3, proactive and structured ways to ensure 
that values are considered at all stages of the soft-
ware lifecycle; and level 4, software tools to support 
values. You get the idea. Requirements engineering 
methods could be applied easily to refine what val-
ues mean. After all, one of the biggest challenges in 
instilling values in software is that values are, by defi-
nition, vague concepts. However, specifying values in 
concrete terms, in the context of an actual project, 
plays to the strengths of requirements engineering 
methods. Also, well-accepted technical methods 
could be adapted to look at software development 
through a values lens: take A/B testing, for example, 
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FIGURE 2. A software developer’s values versus human 

values: software engineers value technical concepts such 

as productivity, automation, usability, and quality, with the 

assumption that these traits naturally lead to broader human 

values. This is a naive view, however; human values and 

software developer values rarely coexist. Methods such as 

user-centered design, user-experience design, and values-

sensitive design4 take a broader view, but we are a long way 

from full alignment between human and developer values.

WHERE ARE THE 
VALUES IN SOFTWARE?

V alue is an overloaded term. Values-based 
methods are well known in human–com-

puter interaction (HCI) and information sys-
tems4,9,10 but are nonexistent in software engi-
neering. HCI and information systems do not deal 
with the business of actually building software, 
so although they could apply in the early stage of 
software engineering, they offer little guidance 
as to how to handle values in the more technical 
stages of development. The word value is often 
referred to in agile methods, but then the focus 
is only on business value. Similarly, Boehm’s 
value-based software engineering11 deals almost 
entirely with economic value. Some emerg-
ing works in software engineering take a more 
human-values approach, such as GenderMag12 
for discovering gender bias in software, but this is 
still very early.
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which could be used to test out how different soft-
ware versions impact values. 

   It is time that the software industry takes human 
values seriously, but not just for the greater social 

good. Violations of human values can have serious 
negative financial consequences for the economy. 
In a sample of Internet security breaches, Cavuso-
glu 6  found an average market-capitalization loss of 
US$1.65 billion for the companies affected. In the 
Volkswagen (VW) emissions scandal, 7  software 
designers deliberately contradicted the company’s 
corporate value of responsible thinking, a decision 
that led to the resignation of the chief executive offi-
cer, a 30% drop in VW’s stock price, and a 25% drop in 
sales within one year. Therefore, value violations are 
big business. Software researchers and practitioners 
must respond by doing what they do best: creating 
methods for handling such problems before a catas-
trophe hits.  
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The global spread of a vicious disease in our 
interconnected world is threatening the health 
and livelihoods of millions of people. Beyond 

the immediate effects of the disease on individuals, 
families, and communities, we can anticipate the 
long-term impact on whole societies and economies. 
Our lives are changing not only because of the coro-
navirus pandemic, but also because of climate change 
and environmental damage. These are the defining cri-
ses of our time, and they are shining a harsh spotlight 
on the intractable socioeconomic inequalities long 
plaguing the world's people. We cannot meet these 
challenges only on a local or national scale. Global 
crises require a global response.

MULTIMEDIA IN TIMES OF  
THE PANDEMIC

We have only begun to understand the importance 
of multimedia communication in the face of a pan-
demic. Electronic products and services, especially 
interactive ones, that combine text, sound, video, etc., 
quickly proved essential socially and economically 
when global quarantine became necessary. Previous 
multimedia research and existing tools have contrib-
uted a “safety net” of sorts to allow continuation of 
at least some education, business, and government 
communication.

Research in multimedia over the past decades has 
contributed to understanding, interpreting, transport-
ing, delivering, and interactively presenting multimedia 
experiences across many domains. Software and tools 

rooted in this field support multimedia networking 
and streaming, interactive video conferencing, and 
communication and interaction on social media. Now, 
physical events and meetings, including those of global 
leaders, have by necessity become virtual. Multimedia 
research has thus become mainstream and usable 
for everyone. Confined by stay-at-home orders, we 
have found tools to connect, to keep in touch, to work 
and learn. Even when this disease is brought under 
control, however, our daily lives will never be what 
they were. Furthermore, the crisis has starkly exposed 
long-troubling, deep social and economic inequalities. 
Consequently, the questions now are how will this pan-
demic transform our future work life and educational 
systems, and how can we use this transformation to 
level the playing field, to address inequalities wasting 
so much human potential around the world?

Multimedia technologies are already building 
blocks for many application domains much needed in 
these days: Health care, education, additive manufac-
turing, logistics, crisis management, and many more. 
So, we could sit back and be satisfied—or we could 
understand our field from a philanthropic angle and 
help shape our common digital future, positively and 
inclusively.

MULTIMEDIA FOR OUR COMMON 
DIGITAL FUTURE

The challenges of the day have been well framed 
by the United Nations, when in 2015 they decided 
on a 2030 Agenda for Sustainable Development. 
This agenda “is a plan of action for people, planet 
and prosperity” and forms “universal goals and tar-
gets which involve the entire world, developed and 
developing countries alike.”1 The agenda addresses 
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17 sustainability goals and describes actionable 
objectives, from ending poverty to ensuring access 
to clean water and clean energy, to education and 
decent work for all. In meeting these Sustainable 
Development Goals (SDGs), digitization will play an 
important, even transformative, role.

Recently, the German Advisory Council on Global 
Change published their Flagship report, “Towards Our 
Common Digital Future.”2 This excellent, comprehen-
sive report describes the enormous potential digiti-
zation holds for our common digital future: “Digital 
change is epochal and opens the door to a new era of 
human development.” The report frames digitization 
as an opportunity to shape the digital societies of the 
future and lays out how to shape the “Great Transfor-
mation” to address sustainability goals. The advisory 
council not only sees digital technologies as impor-
tant for this transformation but also emphasizes the 
necessity to link digitization and sustainability.

Technology and science will play an important role 
in this common digital future, and so can the field of 
multimedia. However, technological advances alone 
are not necessarily a sure-fire success. We witnessed 
several examples in the last decade showing that 
the narrative of an always positive use of digitization 
cannot be told anymore—digital technologies can be 
used not only for the good of humans but also to their 
detriment. It is on us to actively shape this change for 
the better, for all of us.

MULTIMEDIA—WHERE TO GO?
Multimedia can be a rich source for address-
ing many global challenges. Here, we focus on the 
potential of multimedia to advance progress toward 
selected SDGs.

The Sustainable Development Goal 3: Good Health 
and Well-being focuses on the severe inequalities 
worldwide that leave much of the world's population 
struggling just to survive, much less experience good 
health and a sense of well-being. It is time to mount 
a concerted global effort to alleviate this condition. 
Multimedia can be instrumental to implementing 
global solutions. Multimedia researchers have already 
contributed to significant advances in personal 
health, from multimedia signals to a new generation 
of future personal digital health technology.3 Mul-
timedia can act as an accelerator for understanding 

personal health and supporting the individual in 
gaining and maintaining good health.4 Current devel-
opments have only begun to unfold the potential to 
better understand, diagnose and predict courses of 
disease, and to contribute dramatically to universal 
health solutions.

The Sustainable Development Goal 4: Quality Edu-
cation: aims to ensure inclusive and equitable, quality 
education and to promote lifelong learning opportu-
nities for all. While the field of multimedia has been 
working for some time on interactive digital educa-
tion and social media for learning,5 the pandemic has 
given digital education a boost. It revealed the gap 
between digital technologies and digital education. 
The challenge is to integrate these new technologies 
into our learning contexts and curricula and use them 
to provide high quality education to everyone.

The Sustainable Development Goal 8: Decent 
work and economic growth aims to promote inclusive 
and sustainable economic growth, full and produc-
tive employment, and decent work for all. Digitiza-
tion, along with multimedia and interactive technolo-
gies, will be the driving force of the workplace of the 
future. Widespread transformation of the workplace 
will require that people accept and want to use digital 
technologies.6 Participatory design work can result 
in new technologies conducive to learning, to inclu-
sion, and to access for the transformed job market of 
the future.

The Sustainable Development Goal 10: Reduced 
Inequalities aims at reducing inequality within and 
among countries. In our field, social media usage 
and social media coverage are studied to understand 
political information and disinformation on social 
media and how news is perceived on social media 
around the globe.7

For example, existing work has investigated the 
role of social media in political engagement and the 
technologies in play dispensing political information 
and mediating political engagement. We must develop 
technologies that allow people to “freely express 
themselves, access trustworthy information, engage 
in meaningful deliberation, and organize themselves 
without fear of being commoditized, manipulated, 
monitored, or harassed by authorities.”8

Currently these SDGs are mapped to national 
research agendas. In Germany, for example, you will 



www.computer.org/computingedge 57

EDITORIAL

now find different SDG objectives to be addressed in 
different calls for grant proposals.

We need to discuss and identify how the field of 
multimedia can contribute to a positive digital future 
for all of us. What does this mean for researchers 
and practitioners in higher education institutions, 
research institutes, and companies, and what can be 
our personal contribution to society to shape a digital 
future for the betterment of all? 
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